Rss
Physicians Scientists & Engineers for Healthy Energy
Per page:
Sort by:
Search Results 14 pages

Natural Gas Pipeline Leaks Across Washington, DC

Environmental Science and Technology
Jan 2014
Jackson, Robert B., Adrian Down, Nathan G. Phillips, Robert C. Ackley, Charles W. Cook, Desiree L. Plata, and Kaiguang Zhao
This study presents sampling results of methane leakage from the natural gas distribution system in Washington DC. 12 of the 19 locations tested showed concentrations hig enough to risk explosion.
Peer Reviewed

Life Cycle Assessment (LCA) of Electricity Generation Technologies: Overview, Comparability and Limitations

Renewable and Sustainable Energy Reviews
Dec 2013
Turconi, Roberto, Alessio Boldrin, and Thomas Astrup
This study presents a review of 167 case studies involving the life cycle assessment (LCA) of electricity generation based on hard coal, lignite, natural gas, oil, nuclear, biomass, hydroelectric, solar photovoltaic (PV) and wind to identify ranges of emission data for GHG, NOx and SO2.
Peer Reviewed

Methane emissions estimate from airborne measurements over a western United States natural gas field

Geophysical Research Letters
27 Aug 2013
Anna Karion, Colm Sweeney, Gabrielle Pétron, Gregory Frost, R. Michael Hardesty, Jonathan Kofler, Ben R. Miller, Tim Newberger, Sonja Wolter, Robert Banta, Alan Brewer, Ed Dlugokencky, Patricia Lang, Stephen A. Montzka, Russell Schnell, Pieter Tans, Micha
This study used atmospheric measurements in a mass balance approach to estimate methane emissions from a natural gas and oil production field in Uintah County, Utah.
Peer Reviewed

Air pollutant emissions from the development, production and processing of Marcellus Shale natural gas

Journal of the Air & Waste Management Association
06 Aug 2013
Anirban A. Roy, Peter J. Adams & Allen L. Robinson
This work describes an air emissions inventory for the development, production and processing of natural gas in the Marcellus Shale region for 2009 and 2020.
Peer Reviewed

Quantifying sources of methane using light alkanes in the Los Angeles basin, California

JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES
28 May 2013
J Peischl, TB Ryerson, J Brioude, KC Aikin, AE Andrews, E Atlas, D Blake, BC Daube, JA de Gouw, E Dlugokencky, GJ Frost, DR Gentner, JB Gilman, AH Goldstein, RA Harley, JS Holloway, J Kofler, WC Kuster, PM Lang, PC Novelli, GW Santoni, M Trainer, SC Wofsy
Open Access
Peer Reviewed

Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania

Environmental Research Letters
31 January 2013
Aviva Litovitz, Aimee Curtright, Shmuel Abramzon, Nicholas Burger and Constantine Samaras
This study gives an estimate of the conventional air pollutant emissions (VOC, NOx PM2.5, PM10 and SOx) from shale gas development in Pennsylvania and the monetary value of the associated environmental and health damages. Region-wide damages were estimated between $7.2 to $32 million dollars for 2011. While emissions and damage estimates are relatively small compared to other major sources of air pollution in the state overall, they are a concern in regions of significant extraction activities, which tend to be concentrated in a few counties. In counties with concentrated activity NOx emissions from the shale gas industry were 20-40 times higher than allowable for a single minor source. The authors also note that the industry and regulatory agencies need to account for air emissions from ongoing, long-term activities and not only those associated with development since more than 80% of damages occur in the years after the well is developed. For instance, compressor station activities alone account for 60-75% of all extraction-associated damages. It is important to consider county-level damage given site-specific variability such as the concentration of shale gas activities, population, and areas where air quality is already a concern. The authors conclude that shale gas extraction will be associated with non-trivial air pollution emissions and that more detailed analyses (e.g. regional data acquisition and consideration of site-specific variability.
Peer Reviewed

Human health risk assessment of air emissions from development of unconventional natural gas resources

Science of the Total Environment
21 Mar 2012
Lisa M. McKenzie, Roxana Z. Witter, Lee S. Newman, John L. Adgate

This study estimated health risks for exposures to air emissions from a NGD project in Garfield County, Colorado with the objective of supporting risk prevention recommendations in a health impact assessment (HIA).

Peer Reviewed

Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study

Journal of Geophysical Research: Atmospheres
21 Feb 2012
Gabrielle Pétron, Gregory Frost, Benjamin R. Miller, Adam I. Hirsch, Stephen A. Montzka, Anna Karion, Michael Trainer, Colm Sweeney, Arlyn E. Andrews, Lloyd Miller, Jonathan Kofler, Amnon Bar-Ilan, Ed J. Dlugokencky, Laura Patrick, Charles T. Moore Jr., T

The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver-Julesburg Basin. To further characterize the emissions of methane and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) around BAO, a pilot study involving automobile-based surveys was carried out during the summer of 2008.

Peer Reviewed

An Exploratory Study of Air Quality near Natural Gas Operations

Human and Ecological Risk Assessment
20 Sep 2011
Theo Colborn, Kim Schultz, Lucille Herrick, and Carol Kwiatkowski
This study assessed air quality in western Colorado using weekly air samples taken before, during, and after drilling and hydraulic fracturing of a new natural gas well pad throughout the period of a year. The data showed numerous chemicals in the air associated with natural gas operations, most notably methane, ethane, propane, and other alkanes. Highest concentrations of non-methane hydrocarbons (NMHCs) were observed during the initial drilling phase. A literature search of the health effects of the NMHCs found that many had multiple health effects, including thirty that affected the endocrine system. The toxic solvent methylene chloride, which is not reported in drilling products, was detected 73% of the time, several times in high concentrations. The study concluded that the human and environmental impacts of NMHCs should be studied further given the close proximity of natural gas operations to the public.
Peer Reviewed

Ozone Impacts of Natural Gas Development in the Haynesville Shale

Environmental Science & Technology
18 Nov 2010
Susan Kemball-Cook, Amnon Bar-Ilan, John Grant, Lynsey Parker, Jaegun Jung, Wilson Santamaria, Jim Mathews, and Greg Yarwood

Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009−2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

There are no products in your shopping cart.