The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2129 studies.
Last updated: March 07, 2021

Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Removal of organic compounds from shale gas fracturing flowback water by an integrated electrocoagulation and electro-peroxone process
Zhang et al., June 2021
Removal of organic compounds from shale gas fracturing flowback water by an integrated electrocoagulation and electro-peroxone process
Yixin Zhang, Erzhuo Zhao, Xinxin Cui, Wei Zhu, Xia Han, Gang Yu, Yujue Wang (2021). Separation and Purification Technology, 118496. 10.1016/j.seppur.2021.118496
Abstract:
This study investigated the removal of organic compounds from shale gas fracturing flowback water (FFW) by an integrated electro-coagulation and electro-peroxone (EC-EP) process in a divided electrochemical reactor. During the EC-EP process, electricity was efficiently utilized to produce both aluminum ion (Al3+) from electrochemical oxidation of an aluminum anode in the anodic compartment and hydrogen peroxide (H2O2) from oxygen reduction at a carbon-based cathode in the cathodic compartment. The in-situ generated H2O2 then reacted with ozone (O3) sparged in the cathodic compartment to produce hydroxyl radicals (•OH) for pollutant oxidation. The results showed that by sequentially treating the selected FFW by the EC and EP process in the anodic and cathodic compartment for 30 min, respectively, the EC-EP process effectively removed ~95% of total organic carbon (TOC) from the FFW, meeting the wastewater discharge standard for TOC (≤30 mg/L) with a low specific energy consumption of 0.11–0.21 kWh/g TOC removed. In contrast, individual EC and EP process, as well as the previously investigated ECP process that combined the EC and EP process in an undivided reactor, removed only ~76%, 32%, and 80% TOC from the FFW under similar reaction conditions, and thus could not meet the wastewater discharge standard. These results demonstrate that the EC-EP process successfully integrates the merit of the EC and EP process and may thus provide a cost-effective way to remove organic compounds for FFW disposal and reuses.
This study investigated the removal of organic compounds from shale gas fracturing flowback water (FFW) by an integrated electro-coagulation and electro-peroxone (EC-EP) process in a divided electrochemical reactor. During the EC-EP process, electricity was efficiently utilized to produce both aluminum ion (Al3+) from electrochemical oxidation of an aluminum anode in the anodic compartment and hydrogen peroxide (H2O2) from oxygen reduction at a carbon-based cathode in the cathodic compartment. The in-situ generated H2O2 then reacted with ozone (O3) sparged in the cathodic compartment to produce hydroxyl radicals (•OH) for pollutant oxidation. The results showed that by sequentially treating the selected FFW by the EC and EP process in the anodic and cathodic compartment for 30 min, respectively, the EC-EP process effectively removed ~95% of total organic carbon (TOC) from the FFW, meeting the wastewater discharge standard for TOC (≤30 mg/L) with a low specific energy consumption of 0.11–0.21 kWh/g TOC removed. In contrast, individual EC and EP process, as well as the previously investigated ECP process that combined the EC and EP process in an undivided reactor, removed only ~76%, 32%, and 80% TOC from the FFW under similar reaction conditions, and thus could not meet the wastewater discharge standard. These results demonstrate that the EC-EP process successfully integrates the merit of the EC and EP process and may thus provide a cost-effective way to remove organic compounds for FFW disposal and reuses.
Fate of radium on the discharge of oil and gas produced water to the marine environment
Ahmad et al., June 2021
Fate of radium on the discharge of oil and gas produced water to the marine environment
Faraaz Ahmad, Katherine Morris, Gareth T. W. Law, Kevin G. Taylor, Samuel Shaw (2021). Chemosphere, 129550. 10.1016/j.chemosphere.2021.129550
Abstract:
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements
Feng Xiao, May 2021
Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements
Feng Xiao (2021). Science of The Total Environment, 145283. 10.1016/j.scitotenv.2021.145283
Abstract:
The oilfield produced water is a major waste stream in places where shale-gas production is growing rapidly. The reuse of produced water merits consideration because this practice helps reduce freshwater demand for fracking and moderates water pollution. Knowledge about the chemistry of produced water is needed to develop sustainable treatment/reuse strategies and set standards for acceptable levels of treatment of produced water. Thus, the author performed the first comprehensive analysis of oilfield produced water collected from the Bakken shale play in the U.S. state of North Dakota that represents the nation's third-largest net increase in proven crude oil reserves. The concentrations of a total of 36 elements in 13 IUPAC groups were determined. Among them, a few metals that are critical to the economy of the United States were detected at elevated concentrations (median, mg/L): K (7,620), Mg (2780), Sr (1610), Li (69), and Mn (33). Heavy metals essential for plants and animals, including Cu, Zn, and Mn, were detected at ppm levels. Measurable concentrations of highly toxic metal ions such as Cd and Pb were not detected. Concentrations of rare earth elements and platinum group metals were below respective detection limits. The produced water samples had very high total dissolved solids (237,680 ± 73,828 mg/L) and total hardness (>31,000 mg/L as CaCO3) but an extremely low alkalinity (152.4 ± 184.9 mg/L as CaCO3); therefore, softening by lime and soda was ineffective. Softening by caustic soda removed 99.5% hardness ions (Ca and Mg) under alkaline conditions. This study provides vital insight into the chemistry and treatability of produced water containing various metals.
The oilfield produced water is a major waste stream in places where shale-gas production is growing rapidly. The reuse of produced water merits consideration because this practice helps reduce freshwater demand for fracking and moderates water pollution. Knowledge about the chemistry of produced water is needed to develop sustainable treatment/reuse strategies and set standards for acceptable levels of treatment of produced water. Thus, the author performed the first comprehensive analysis of oilfield produced water collected from the Bakken shale play in the U.S. state of North Dakota that represents the nation's third-largest net increase in proven crude oil reserves. The concentrations of a total of 36 elements in 13 IUPAC groups were determined. Among them, a few metals that are critical to the economy of the United States were detected at elevated concentrations (median, mg/L): K (7,620), Mg (2780), Sr (1610), Li (69), and Mn (33). Heavy metals essential for plants and animals, including Cu, Zn, and Mn, were detected at ppm levels. Measurable concentrations of highly toxic metal ions such as Cd and Pb were not detected. Concentrations of rare earth elements and platinum group metals were below respective detection limits. The produced water samples had very high total dissolved solids (237,680 ± 73,828 mg/L) and total hardness (>31,000 mg/L as CaCO3) but an extremely low alkalinity (152.4 ± 184.9 mg/L as CaCO3); therefore, softening by lime and soda was ineffective. Softening by caustic soda removed 99.5% hardness ions (Ca and Mg) under alkaline conditions. This study provides vital insight into the chemistry and treatability of produced water containing various metals.
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Philibert et al., May 2021
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Danielle A. Philibert, Danielle D. Lyons, Ketih B. Tierney (2021). Science of The Total Environment, 144745. 10.1016/j.scitotenv.2020.144745
Abstract:
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Developing a fuzzy logic-based risk assessment for groundwater contamination from well integrity failure during hydraulic fracturing
Milton-Thompson et al., May 2021
Developing a fuzzy logic-based risk assessment for groundwater contamination from well integrity failure during hydraulic fracturing
Olivia Milton-Thompson, Akbar A. Javadi, Zoran Kapelan, Aaron G. Cahill, Laurie Welch (2021). Science of The Total Environment, 145051. 10.1016/j.scitotenv.2021.145051
Abstract:
Recent natural gas development by means of hydraulic fracturing requires a detailed risk analysis to eliminate or mitigate damage to the natural environment. Such geo-energy related subsurface activities involve complex engineering processes and uncertain data, making comprehensive, quantitative risk assessments a challenge to develop. This research seeks to develop a risk framework utilising data for quantitative numerical analysis and expert knowledge for qualitative analysis in the form of fuzzy logic, focusing on hydraulically fractured wells during the well stimulation stage applied to scenarios in the UK and Canada. New fault trees are developed for assessing cement failure in the vertical and horizontal directions, resulting in probabilities of failure of 3.42% and 0.84%, respectively. An overall probability of migration to groundwater during the well injection stage was determined as 0.0006%, compared with a Canadian case study which considered 0.13% of wells failed during any stage of the wells life cycle. It incorporates various data types to represent the complexity of hydraulic fracturing, encouraging a more complete and accurate analysis of risk failures which engineers can directly apply to old and new hydraulic fracturing sites without the necessity for extensive historic and probabilistic data. This framework can be extended to assess risk across all stages of well development, which would lead to a gap in the modelled and actual probabilities narrowing. The framework developed has relevance to other geo-energy related subsurface activities such as CO2 sequestration, geothermal, and waste fluid injection disposal.
Recent natural gas development by means of hydraulic fracturing requires a detailed risk analysis to eliminate or mitigate damage to the natural environment. Such geo-energy related subsurface activities involve complex engineering processes and uncertain data, making comprehensive, quantitative risk assessments a challenge to develop. This research seeks to develop a risk framework utilising data for quantitative numerical analysis and expert knowledge for qualitative analysis in the form of fuzzy logic, focusing on hydraulically fractured wells during the well stimulation stage applied to scenarios in the UK and Canada. New fault trees are developed for assessing cement failure in the vertical and horizontal directions, resulting in probabilities of failure of 3.42% and 0.84%, respectively. An overall probability of migration to groundwater during the well injection stage was determined as 0.0006%, compared with a Canadian case study which considered 0.13% of wells failed during any stage of the wells life cycle. It incorporates various data types to represent the complexity of hydraulic fracturing, encouraging a more complete and accurate analysis of risk failures which engineers can directly apply to old and new hydraulic fracturing sites without the necessity for extensive historic and probabilistic data. This framework can be extended to assess risk across all stages of well development, which would lead to a gap in the modelled and actual probabilities narrowing. The framework developed has relevance to other geo-energy related subsurface activities such as CO2 sequestration, geothermal, and waste fluid injection disposal.
Fracturing flowback fluids from shale gas wells in western chongqing: Geochemical analyses and relevance for exploration & development
Fu et al., April 2021
Fracturing flowback fluids from shale gas wells in western chongqing: Geochemical analyses and relevance for exploration & development
Yonghong Fu, Yuqiang Jiang, Qinhong Hu, Tongtong Luo, Yaogan Li, , Zhanlei Wang, Xingping Yin (2021). Journal of Natural Gas Science and Engineering, 103821. 10.1016/j.jngse.2021.103821
Abstract:
Understanding the behavior and composition of fracturing flowback water (FFW) can provide insight into in situ water–rock interactions, assessment of the success of the fracturing operations. FFW was collected from three wells (Z202-H1, Z203, and Z205) for up to 108 days after fracturing in the same area of western Chongqing, China. The samples were analyzed for the concentrations of various ions (Na+, K+, Ca2+, Mg2+, Ba2+, Sr2+, Cl−, SO42−, Br−, HCO3−, etc.) and for the stable isotope composition (δD and δ18O) of water. With increasing flowback time, the ionic concentration and total salinity increased (e.g., from 315 mg/L to 37117 mg/L after 38 days for well Z203), stable isotopic ratios became heavier (e.g., δD values changed from −23.59‰ to −14.32‰, δ18O values changed from −3.91‰ to −1.92‰). The total salinity of the FFW is shown to be the result of mixing of the highly saline formation water and the low-salinity fracturing water. FFW from Z205 had higher concentrations of Li+ and NO3−, heavier stable isotope compositions, larger Na+/Cl− ratio, smaller (Cl−-Na+)/Mg2+ ratio, and larger SO42− × 100/Cl− ratio compared to the other two wells. All these phenomena revealed that Z205 is more likely to contact with active aquifers which is not conducive to natural gas preservation, because Z205 is close to (less 300 m from) a grade II fault. The RITS and RSIH with flowback time in Z203 were higher than Z202-H1, which shows that FFW from Z203 contained a greater fraction of formation water released from pores or fractures due to complex the network fractures formed by fracturing. Therefore, the fracturing operations of Z203 is better than Z202-H1. This result can reveal the reason for the production difference of adjacent wells, which is difficult to explain by similar total SRV.
Understanding the behavior and composition of fracturing flowback water (FFW) can provide insight into in situ water–rock interactions, assessment of the success of the fracturing operations. FFW was collected from three wells (Z202-H1, Z203, and Z205) for up to 108 days after fracturing in the same area of western Chongqing, China. The samples were analyzed for the concentrations of various ions (Na+, K+, Ca2+, Mg2+, Ba2+, Sr2+, Cl−, SO42−, Br−, HCO3−, etc.) and for the stable isotope composition (δD and δ18O) of water. With increasing flowback time, the ionic concentration and total salinity increased (e.g., from 315 mg/L to 37117 mg/L after 38 days for well Z203), stable isotopic ratios became heavier (e.g., δD values changed from −23.59‰ to −14.32‰, δ18O values changed from −3.91‰ to −1.92‰). The total salinity of the FFW is shown to be the result of mixing of the highly saline formation water and the low-salinity fracturing water. FFW from Z205 had higher concentrations of Li+ and NO3−, heavier stable isotope compositions, larger Na+/Cl− ratio, smaller (Cl−-Na+)/Mg2+ ratio, and larger SO42− × 100/Cl− ratio compared to the other two wells. All these phenomena revealed that Z205 is more likely to contact with active aquifers which is not conducive to natural gas preservation, because Z205 is close to (less 300 m from) a grade II fault. The RITS and RSIH with flowback time in Z203 were higher than Z202-H1, which shows that FFW from Z203 contained a greater fraction of formation water released from pores or fractures due to complex the network fractures formed by fracturing. Therefore, the fracturing operations of Z203 is better than Z202-H1. This result can reveal the reason for the production difference of adjacent wells, which is difficult to explain by similar total SRV.
Environmental impacts from conventional and shale gas and oil development in China considering regional differences and well depth
Wang et al., April 2021
Environmental impacts from conventional and shale gas and oil development in China considering regional differences and well depth
Siyun Wang, Xu Tang, Jianliang Wang, Baosheng Zhang, Wangmin Sun, Mikael Höök (2021). Resources, Conservation and Recycling, 105368. 10.1016/j.resconrec.2020.105368
Abstract:
China has stepped up its oil and gas development including unconventional resources as foreign dependence for oil and gas increased. Environmental impacts from the development phase has also caused widespread concern. To better understand environment impacts from current oil and gas development in China, a hybrid life cycle analysis (H-LCA) model was used to estimate the impact of six fields at the development stage based on data from 2017. The full environmental impact and full impact intensity (i.e., full environmental impact per unit of output by calorific value) of shale gas, conventional natural gas and oil development in China was compared and analyzed by eliminating well depth. Shale gas has 12.5% more environmental impact than conventional natural gas. Environmental impact of natural gas development is roughly 1.5 to 2 times that of conventional oil. Development of gas in Sichuan Basin have the greatest environmental impact, following southeast coast, Song Liao Basin, and Junggar Basin. However, the full impact intensity of shale gas development is more than five times that of conventional natural gas, but natural gas is still greener than conventional oil. The greatest full impact intensity is found in Junggar Basin, following Song Liao Basin and southeastern coast. From the comparison of full environmental impact and full impact intensity under per well depth, it's found that both of these are not positively correlated with reservoir depth and well depth even in the same basin. More attention should be paid to driving effects of specific reservoir developments and geological conditions.
China has stepped up its oil and gas development including unconventional resources as foreign dependence for oil and gas increased. Environmental impacts from the development phase has also caused widespread concern. To better understand environment impacts from current oil and gas development in China, a hybrid life cycle analysis (H-LCA) model was used to estimate the impact of six fields at the development stage based on data from 2017. The full environmental impact and full impact intensity (i.e., full environmental impact per unit of output by calorific value) of shale gas, conventional natural gas and oil development in China was compared and analyzed by eliminating well depth. Shale gas has 12.5% more environmental impact than conventional natural gas. Environmental impact of natural gas development is roughly 1.5 to 2 times that of conventional oil. Development of gas in Sichuan Basin have the greatest environmental impact, following southeast coast, Song Liao Basin, and Junggar Basin. However, the full impact intensity of shale gas development is more than five times that of conventional natural gas, but natural gas is still greener than conventional oil. The greatest full impact intensity is found in Junggar Basin, following Song Liao Basin and southeastern coast. From the comparison of full environmental impact and full impact intensity under per well depth, it's found that both of these are not positively correlated with reservoir depth and well depth even in the same basin. More attention should be paid to driving effects of specific reservoir developments and geological conditions.
Comparative geochemistry of flowback chemistry from the Utica/Point Pleasant and Marcellus formations
Welch et al., March 2021
Comparative geochemistry of flowback chemistry from the Utica/Point Pleasant and Marcellus formations
Susan A. Welch, Julia M. Sheets, Rebecca A. Daly, Andrea Hanson, Shikha Sharma, Thomas Darrah, John Olesik, Anthony Lutton, Paula J. Mouser, Kelly C. Wrighton, Michael J. Wilkins, Tim Carr, David R. Cole (2021). Chemical Geology, 120041. 10.1016/j.chemgeo.2020.120041
Abstract:
Flowback/Produced fluid samples were collected from several wells from two Utica/Point Pleasant (UPP) sites (UPPW and UPPS) in Ohio, and one Marcellus (Marcellus Shale Energy and Environment Laboratory (MSEEL)) site in West Virginia over a period of approximately two years. Although these formations have different ages, depositional environments, diagenetic histories, and geochemical and mineralogical compositions (i.e. the UPP is significantly more carbonate rich than the Marcellus which is more siliceous), analysis of trends in fluid species over time shows that, overall, the TDS and major solubilized elements (Na, Ca, Cl) in the UPP and Marcellus brines are remarkably similar. Total dissolved solutes (TDS) in these brines ranged from approximately 40 to 250 g/L salt, and in general, concentrations increased with time elapsed since natural gas well completion and stimulation. The behavior of Na, Br, and Cl suggests that the produced water signatures from these formations are largely derived from the native formational brines which display evidence of originating from evaporated seawater. There is a strong correlation between Cl and Br, indicating that both species behave conservatively, and the similarity among each of these brines suggests no appreciable contribution of salt from halite dissolution because Br is excluded from the halite structure. Cl/Br ratios in the brines range from ~80 to 120 (mg/L/mg/L). Other elements, such as K, which readily reacts between fluids and ion exchange sites on clays, generally exhibit conservative behavior for an individual site, but show significant variations among each of the different well pads. The concentrations of Sr and Ba vary dramatically among well sites, and increase with respect to Cl− over time, suggesting increasing solubilization, presumably from desorption from clay minerals or dissolution of carbonates or sulfates from the source formation(s). The UPPW well site has very low Ba due to high-sulfate input fluid, which resulted in precipitation of barite/celestite in the brines. In contrast the UPPS well site had elevated Sr (~ 3500 mg/L), presumably due to the use of Sr-rich recycled brine used in hydraulic fracturing. The Marcellus site had the highest Ba concentrations (up to 10 g/L) and highest Ba/Sr ratios in the fluids, due to the high concentration of barium in the Marcellus target (~ 1000 ppm, as compared to ~200 ppm in the UPP). These observations suggest that solutes in the FP fluids are derived from native brines, water-rock interactions that have occurred over geologic time scales, as well as some contribution from contemporaneous reactions in the subsurface. The results also show that the composition of the injected fluid can influence flowback fluid chemistry and possibly production efficiency.
Flowback/Produced fluid samples were collected from several wells from two Utica/Point Pleasant (UPP) sites (UPPW and UPPS) in Ohio, and one Marcellus (Marcellus Shale Energy and Environment Laboratory (MSEEL)) site in West Virginia over a period of approximately two years. Although these formations have different ages, depositional environments, diagenetic histories, and geochemical and mineralogical compositions (i.e. the UPP is significantly more carbonate rich than the Marcellus which is more siliceous), analysis of trends in fluid species over time shows that, overall, the TDS and major solubilized elements (Na, Ca, Cl) in the UPP and Marcellus brines are remarkably similar. Total dissolved solutes (TDS) in these brines ranged from approximately 40 to 250 g/L salt, and in general, concentrations increased with time elapsed since natural gas well completion and stimulation. The behavior of Na, Br, and Cl suggests that the produced water signatures from these formations are largely derived from the native formational brines which display evidence of originating from evaporated seawater. There is a strong correlation between Cl and Br, indicating that both species behave conservatively, and the similarity among each of these brines suggests no appreciable contribution of salt from halite dissolution because Br is excluded from the halite structure. Cl/Br ratios in the brines range from ~80 to 120 (mg/L/mg/L). Other elements, such as K, which readily reacts between fluids and ion exchange sites on clays, generally exhibit conservative behavior for an individual site, but show significant variations among each of the different well pads. The concentrations of Sr and Ba vary dramatically among well sites, and increase with respect to Cl− over time, suggesting increasing solubilization, presumably from desorption from clay minerals or dissolution of carbonates or sulfates from the source formation(s). The UPPW well site has very low Ba due to high-sulfate input fluid, which resulted in precipitation of barite/celestite in the brines. In contrast the UPPS well site had elevated Sr (~ 3500 mg/L), presumably due to the use of Sr-rich recycled brine used in hydraulic fracturing. The Marcellus site had the highest Ba concentrations (up to 10 g/L) and highest Ba/Sr ratios in the fluids, due to the high concentration of barium in the Marcellus target (~ 1000 ppm, as compared to ~200 ppm in the UPP). These observations suggest that solutes in the FP fluids are derived from native brines, water-rock interactions that have occurred over geologic time scales, as well as some contribution from contemporaneous reactions in the subsurface. The results also show that the composition of the injected fluid can influence flowback fluid chemistry and possibly production efficiency.
Irrigation of wheat with select hydraulic fracturing chemicals: Evaluating plant uptake and growth impacts
Shariq et al., March 2021
Irrigation of wheat with select hydraulic fracturing chemicals: Evaluating plant uptake and growth impacts
Linsey Shariq, Molly C. McLaughlin, Rachelle A. Rehberg, Hannah Miller, Jens Blotevogel, Thomas Borch (2021). Environmental Pollution, 116402. 10.1016/j.envpol.2020.116402
Abstract:
Oilfield flowback and produced water (FPW) is a waste stream that may offer an alternative source of water for multiple beneficial uses. One practice gaining interest in several semi-arid states is the reuse of FPW for agricultural irrigation. However, it is unknown if the reuse of FPW on edible crops could increase health risks from ingestion of exposed food, or impact crop growth. A greenhouse experiment was conducted using wheat (Triticum aestivum) to investigate the uptake potential of select hydraulic fracturing additives known to be associated with health risks. The selected chemicals included acrylamide, didecyldimethylammonium chloride (DDAC), diethanolamine, and tetramethylammonium chloride (TMAC). Mature wheat grain was extracted and analyzed by liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) to quantify chemical uptake. Plant development observations were also documented to evaluate impacts of the chemicals on crop yield. Analytical results indicated that TMAC and diethanolamine had significantly higher uptake into both wheat grain and stems than control plants which were not exposed to the four chemicals under investigation. Acrylamide was measured in statistically higher concentrations in the stems only, while DDAC was not detected in grain or stems. Growth impacts included lodging in treated wheat plants due to increased stem height and grain weight, potentially resulting from increased nitrogen application. While analytical results show that uptake of select hydraulic fracturing chemicals in wheat grain and stems is measurable, reuse of FPW for irrigation in real world scenarios would likely result in less uptake because water would be subject to natural degradation, and often treatment and dilution practices. Nonetheless, based on the outstanding data gaps associated with this research topic, chemical specific treatment and regulatory safeguards are still recommended.
Oilfield flowback and produced water (FPW) is a waste stream that may offer an alternative source of water for multiple beneficial uses. One practice gaining interest in several semi-arid states is the reuse of FPW for agricultural irrigation. However, it is unknown if the reuse of FPW on edible crops could increase health risks from ingestion of exposed food, or impact crop growth. A greenhouse experiment was conducted using wheat (Triticum aestivum) to investigate the uptake potential of select hydraulic fracturing additives known to be associated with health risks. The selected chemicals included acrylamide, didecyldimethylammonium chloride (DDAC), diethanolamine, and tetramethylammonium chloride (TMAC). Mature wheat grain was extracted and analyzed by liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) to quantify chemical uptake. Plant development observations were also documented to evaluate impacts of the chemicals on crop yield. Analytical results indicated that TMAC and diethanolamine had significantly higher uptake into both wheat grain and stems than control plants which were not exposed to the four chemicals under investigation. Acrylamide was measured in statistically higher concentrations in the stems only, while DDAC was not detected in grain or stems. Growth impacts included lodging in treated wheat plants due to increased stem height and grain weight, potentially resulting from increased nitrogen application. While analytical results show that uptake of select hydraulic fracturing chemicals in wheat grain and stems is measurable, reuse of FPW for irrigation in real world scenarios would likely result in less uptake because water would be subject to natural degradation, and often treatment and dilution practices. Nonetheless, based on the outstanding data gaps associated with this research topic, chemical specific treatment and regulatory safeguards are still recommended.
Research fatigue in unconventional oil and gas boomtowns: Perceptions, strategies and obstacles among social scientists collecting human subjects data
Jacquet et al., March 2021
Research fatigue in unconventional oil and gas boomtowns: Perceptions, strategies and obstacles among social scientists collecting human subjects data
Jeffrey B. Jacquet, Ruchie Pathak, Julia H. Haggerty, Gene L. Theodori, Adrianne C. Kroepsch (2021). Energy Research & Social Science, 101918. 10.1016/j.erss.2021.101918
Abstract:
Shale Energy development in the United States has made the community-level impacts of new energy technologies a national concern, resulting in a boom in attention from academics, journalists, and others seeking to learn from the community experiences. A meta-analysis by Walsh et al. (2020) depicts the uneven geographical footprint of research performed in these communities, possibly leading to a phenomenon of research fatigue in communities that have hosted a high number of social science research attempts. In order to better understand and address research fatigue, especially in energy boom communities, we use focus groups and an online-survey of Shale Energy community social scientists to explore the perceived scope, causes, and consequences of and solutions to research fatigue in social research on energy boomtowns. The results show that research fatigue is indeed a major barrier for many researchers in energy impacted communities, but significant geographical variability exists. Furthermore, respondents indicated numerous mitigation strategies to prevent or otherwise reduce research fatigue through better research design and community outreach; however, they also emphasize that real barriers in the nature of scholarly research and the structure of academia prevent the implementation of these strategies. Many of the respondents supported online trainings or forums to inform new energy social science scholars of ways to reduce or mitigate research fatigue and design effective community outreach programs.
Shale Energy development in the United States has made the community-level impacts of new energy technologies a national concern, resulting in a boom in attention from academics, journalists, and others seeking to learn from the community experiences. A meta-analysis by Walsh et al. (2020) depicts the uneven geographical footprint of research performed in these communities, possibly leading to a phenomenon of research fatigue in communities that have hosted a high number of social science research attempts. In order to better understand and address research fatigue, especially in energy boom communities, we use focus groups and an online-survey of Shale Energy community social scientists to explore the perceived scope, causes, and consequences of and solutions to research fatigue in social research on energy boomtowns. The results show that research fatigue is indeed a major barrier for many researchers in energy impacted communities, but significant geographical variability exists. Furthermore, respondents indicated numerous mitigation strategies to prevent or otherwise reduce research fatigue through better research design and community outreach; however, they also emphasize that real barriers in the nature of scholarly research and the structure of academia prevent the implementation of these strategies. Many of the respondents supported online trainings or forums to inform new energy social science scholars of ways to reduce or mitigate research fatigue and design effective community outreach programs.
The perceived impact of fracking on energy security and property values in the United Kingdom: An analysis of interviews with key-informants✰
Jack Adam Lampkin and Matthew Hall, February 2021
The perceived impact of fracking on energy security and property values in the United Kingdom: An analysis of interviews with key-informants✰
Jack Adam Lampkin and Matthew Hall (2021). The Extractive Industries and Society, . 10.1016/j.exis.2021.02.007
Abstract:
A considerable body of academic research has emerged in the last decade identifying many environmental consequences of unconventional hydraulic fracturing (‘fracking’ or ‘UHF’) in the U.K. (for example, on climate change, air pollution, wastewater disposal and water contamination). However, there is much less research on the economic implications of fracking, particularly regarding property values and contributions toward energy security. This article will draw upon primary data collected through twenty semi-structured interviews with key-informants to the fracking industry in the U.K. (including a variety of interviewees from regulatory bodies, academia, the oil and gas industry, and anti-fracking campaigners, giving a reasonable breadth of knowledge, experience and opinion). Qualitative analysis of interview data concludes fracking will contribute only minimally to energy security, whilst having a perceived negative impact for the value of property, particularly those located within close proximity to extraction sites.
A considerable body of academic research has emerged in the last decade identifying many environmental consequences of unconventional hydraulic fracturing (‘fracking’ or ‘UHF’) in the U.K. (for example, on climate change, air pollution, wastewater disposal and water contamination). However, there is much less research on the economic implications of fracking, particularly regarding property values and contributions toward energy security. This article will draw upon primary data collected through twenty semi-structured interviews with key-informants to the fracking industry in the U.K. (including a variety of interviewees from regulatory bodies, academia, the oil and gas industry, and anti-fracking campaigners, giving a reasonable breadth of knowledge, experience and opinion). Qualitative analysis of interview data concludes fracking will contribute only minimally to energy security, whilst having a perceived negative impact for the value of property, particularly those located within close proximity to extraction sites.
Health-based evaluation of ambient air measurements of PM 2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus
Long et al., February 2021
Health-based evaluation of ambient air measurements of PM 2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus
Christopher M. Long, Nicole L. Briggs, Brian A. Cochran, Destiny M. Mims (2021). Journal of Exposure Science & Environmental Epidemiology, 1-14. 10.1038/s41370-021-00298-5
Abstract:
Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads.
Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads.
Risk in discourses around fracking: a discourse linguistic perspective on the UK, the USA and Germany
Anna Mattfeldt, February 2021
Risk in discourses around fracking: a discourse linguistic perspective on the UK, the USA and Germany
Anna Mattfeldt (2021). Journal of Risk Research, 1-15. 10.1080/13669877.2021.1881992
Abstract:
Hydraulic fracturing or “fracking” is a relatively new method of energy extraction that makes it possible to use considerable amounts of shale gas that were hitherto unreachable. Although proponents of fracking voice their hopes for energy independence and an economic boost, fracking has been under discussion in several countries, its possible risks playing a key role when it comes to political decisions regarding the technology. This paper shall examine media discourses surrounding the usage of fracking with a specific regard to the risks that are constituted. Discourses in the UK, the US and Germany are compared, focusing on similarities and differences. These three countries are chosen since the political approach on fracking has been quite different, with the US being one of the first countries to use fracking. The corpora are analyzed with a focus on the depiction of conflictive issues in the framework of so-called agonality. The public perception of risks is shaped by their dominance in the media and the way they are phrased (e.g. as something to worry about), which means that differences in the depiction of risks between the corpora of these three countries are particularly noteworthy. Most readers will not be experts on fracking and thus rely on linguistic descriptions of the technology and its possible potentials and risks. Thus, it is important to analyze how language constitutes fracking. While all three corpora focus on risks concerning drinking water, there are major differences, e.g. when it comes to the discursive weight of earthquakes that might be caused by fracking. Although this is a risk that could affect all countries, only the UK press describes this as a serious risk. The paper also focuses on risks that are harder to grasp, e.g. threats to the traditional social structure of communities where fracking is practiced.
Hydraulic fracturing or “fracking” is a relatively new method of energy extraction that makes it possible to use considerable amounts of shale gas that were hitherto unreachable. Although proponents of fracking voice their hopes for energy independence and an economic boost, fracking has been under discussion in several countries, its possible risks playing a key role when it comes to political decisions regarding the technology. This paper shall examine media discourses surrounding the usage of fracking with a specific regard to the risks that are constituted. Discourses in the UK, the US and Germany are compared, focusing on similarities and differences. These three countries are chosen since the political approach on fracking has been quite different, with the US being one of the first countries to use fracking. The corpora are analyzed with a focus on the depiction of conflictive issues in the framework of so-called agonality. The public perception of risks is shaped by their dominance in the media and the way they are phrased (e.g. as something to worry about), which means that differences in the depiction of risks between the corpora of these three countries are particularly noteworthy. Most readers will not be experts on fracking and thus rely on linguistic descriptions of the technology and its possible potentials and risks. Thus, it is important to analyze how language constitutes fracking. While all three corpora focus on risks concerning drinking water, there are major differences, e.g. when it comes to the discursive weight of earthquakes that might be caused by fracking. Although this is a risk that could affect all countries, only the UK press describes this as a serious risk. The paper also focuses on risks that are harder to grasp, e.g. threats to the traditional social structure of communities where fracking is practiced.
Historic and modern approaches for discovery of abandoned wells for methane emissions mitigation in Oil Creek State Park, Pennsylvania
Saint-Vincent et al., February 2021
Historic and modern approaches for discovery of abandoned wells for methane emissions mitigation in Oil Creek State Park, Pennsylvania
Patricia M. B. Saint-Vincent, James I. Sams, Matthew D. Reeder, Mumbi Mundia-Howe, Garret A. Veloski, Natalie J. Pekney (2021). Journal of Environmental Management, 111856. 10.1016/j.jenvman.2020.111856
Abstract:
Background Hundreds of oil wells were drilled along Oil Creek in Pennsylvania in the mid-1800s, birthing the modern oil industry. No longer in operation, many wells are now classified as abandoned, and, due to their age, their locations are either unknown or inaccurately recorded. These historic well sites present environmental, safety, and economic concerns in the form of possible methane leaks and physical hazards. Methods Airborne magnetic and LiDAR surveys were conducted in the Pioneer Run watershed in Oil Creek State Park to find abandoned wells in a historically significant but physically challenging location. Wells were drilled in this area prior to modern geolocation and legal documentation. Although a large number of old wells were abandoned summarily without remediation of the site, much of the land area within Oil Creek State Park is now covered in trees and dense underbrush, which can obscure wellheads. The thick vegetation and steep terrain limited the possibility of ground-based surveys to easily find well sites for methane emissions studies. The data from remote sensing surveys were used to corroborate potential well locations from historic maps and photographs. Potential well sites were verified in a ground-based field survey and monitored for methane emissions. Results Two historic photographs documenting oil activity in the late 1800s were georeferenced using a combination of magnetic and LiDAR data. LiDAR data, which were more useful in georeferencing and in field verification, identified 290 field locations in the Pioneer Run watershed, 86% of which were possible well sites. Sixty-two percent of the ground-verified wells remained unplugged and comprised the majority of leaking wells. The mean methane emissions factor for unplugged wells was 0.027 ± 0.099 kg/day, lower than other Appalachian Basin methane emissions estimates. Conclusions LiDAR was used for the first time, in combination with an airborne magnetic survey, to reveal underground oil industry features and inform well identification and remediation efforts in difficult-to-navigate regions. In the oldest oil fields, where well casing has been removed or wood conductor casing was installed, historic photographs provide additional lines of evidence for oil wells where ground disturbances have concealed surface features. Identification of well sites is necessary for mitigation efforts, as unplugged wells emit methane, a potent greenhouse gas.
Background Hundreds of oil wells were drilled along Oil Creek in Pennsylvania in the mid-1800s, birthing the modern oil industry. No longer in operation, many wells are now classified as abandoned, and, due to their age, their locations are either unknown or inaccurately recorded. These historic well sites present environmental, safety, and economic concerns in the form of possible methane leaks and physical hazards. Methods Airborne magnetic and LiDAR surveys were conducted in the Pioneer Run watershed in Oil Creek State Park to find abandoned wells in a historically significant but physically challenging location. Wells were drilled in this area prior to modern geolocation and legal documentation. Although a large number of old wells were abandoned summarily without remediation of the site, much of the land area within Oil Creek State Park is now covered in trees and dense underbrush, which can obscure wellheads. The thick vegetation and steep terrain limited the possibility of ground-based surveys to easily find well sites for methane emissions studies. The data from remote sensing surveys were used to corroborate potential well locations from historic maps and photographs. Potential well sites were verified in a ground-based field survey and monitored for methane emissions. Results Two historic photographs documenting oil activity in the late 1800s were georeferenced using a combination of magnetic and LiDAR data. LiDAR data, which were more useful in georeferencing and in field verification, identified 290 field locations in the Pioneer Run watershed, 86% of which were possible well sites. Sixty-two percent of the ground-verified wells remained unplugged and comprised the majority of leaking wells. The mean methane emissions factor for unplugged wells was 0.027 ± 0.099 kg/day, lower than other Appalachian Basin methane emissions estimates. Conclusions LiDAR was used for the first time, in combination with an airborne magnetic survey, to reveal underground oil industry features and inform well identification and remediation efforts in difficult-to-navigate regions. In the oldest oil fields, where well casing has been removed or wood conductor casing was installed, historic photographs provide additional lines of evidence for oil wells where ground disturbances have concealed surface features. Identification of well sites is necessary for mitigation efforts, as unplugged wells emit methane, a potent greenhouse gas.
Acute Myocardial Infarction Associated with Unconventional Natural Gas Development:A Natural Experiment
Denham et al., February 2021
Acute Myocardial Infarction Associated with Unconventional Natural Gas Development:A Natural Experiment
Alina Denham, Mary D. Willis, Daniel Croft, Linxi Liu, Elaine L. Hill (2021). Environmental Research, 110872. 10.1016/j.envres.2021.110872
Abstract:
Background Whereas it is plausible that unconventional natural gas development (UNGD) may adversely affect cardiovascular health, little is currently known. We investigate whether UNGD is associated with acute myocardial infarction (AMI). Methods In this observational study leveraging the natural experiment generated by New York’s ban on hydraulic fracturing, we analyzed the relationship between age- and sex-specific county-level AMI hospitalization and mortality rates and three UNGD drilling measures. This longitudinal panel analysis compares Pennsylvania and New York counties on the Marcellus Shale observed over 2005-2014 (N=2,840 county-year-quarters). Results A hundred cumulative wells is associated with 0.26 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.07,0.46), 0.40 more hospitalizations per 10,000 males 65-74y.o. (95% CI 0.09,0.71), 0.47 more hospitalizations per 10,000 females 65-74y.o. (95% CI 0.18,0.77) and 1.11 more hospitalizations per 10,000 females 75y.o.+ (95% CI 0.39,1.82), translating into 1.4-2.8% increases. One additional well per square mile is associated with 2.63 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.67,4.59) and 9.7 hospitalizations per 10,000 females 75y.o.+ (95% CI 1.92,17.42), 25.8% and 24.2% increases respectively. As for mortality rates, a hundred cumulative wells is associated with an increase of 0.09 deaths per 10,000 males 45-54y.o. (95% CI 0.02,0.16), a 5.3% increase. Conclusions Cumulative UNGD is associated with increased AMI hospitalization rates among middle-aged men, older men and older women as well as with increased AMI mortality among middle-aged men. Our findings lend support for increased awareness about cardiovascular risks of UNGD and scaled-up AMI prevention as well as suggest that bans on hydraulic fracturing can be protective for public health.
Background Whereas it is plausible that unconventional natural gas development (UNGD) may adversely affect cardiovascular health, little is currently known. We investigate whether UNGD is associated with acute myocardial infarction (AMI). Methods In this observational study leveraging the natural experiment generated by New York’s ban on hydraulic fracturing, we analyzed the relationship between age- and sex-specific county-level AMI hospitalization and mortality rates and three UNGD drilling measures. This longitudinal panel analysis compares Pennsylvania and New York counties on the Marcellus Shale observed over 2005-2014 (N=2,840 county-year-quarters). Results A hundred cumulative wells is associated with 0.26 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.07,0.46), 0.40 more hospitalizations per 10,000 males 65-74y.o. (95% CI 0.09,0.71), 0.47 more hospitalizations per 10,000 females 65-74y.o. (95% CI 0.18,0.77) and 1.11 more hospitalizations per 10,000 females 75y.o.+ (95% CI 0.39,1.82), translating into 1.4-2.8% increases. One additional well per square mile is associated with 2.63 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.67,4.59) and 9.7 hospitalizations per 10,000 females 75y.o.+ (95% CI 1.92,17.42), 25.8% and 24.2% increases respectively. As for mortality rates, a hundred cumulative wells is associated with an increase of 0.09 deaths per 10,000 males 45-54y.o. (95% CI 0.02,0.16), a 5.3% increase. Conclusions Cumulative UNGD is associated with increased AMI hospitalization rates among middle-aged men, older men and older women as well as with increased AMI mortality among middle-aged men. Our findings lend support for increased awareness about cardiovascular risks of UNGD and scaled-up AMI prevention as well as suggest that bans on hydraulic fracturing can be protective for public health.
A Review of Issues, Characteristics, and Management for Wastewater due to Hydraulic Fracturing in the U.S.
Lifu Zhang and Berna Hascakir, February 2021
A Review of Issues, Characteristics, and Management for Wastewater due to Hydraulic Fracturing in the U.S.
Lifu Zhang and Berna Hascakir (2021). Journal of Petroleum Science and Engineering, 108536. 10.1016/j.petrol.2021.108536
Abstract:
The large-scale extraction of unconventional resources from shale reservoirs utilizing horizontal hydraulic fracturing has significantly improved economic development in U.S. However, the increased well production has been accompanied by rising concerns about potential impact resulting from excessive freshwater usage and wastewater generation. Currently, water issues have become increasingly challenging with the development of shale reservoirs. In this paper, technical, economic, and environmental challenges encountered during energy production are reviewed with a focus on water issues due to hydraulic fracturing in the U.S. Moreover, the detailed discussion of characteristics and contaminant sources of wastewater indicates the wastewater composition is complicated and varies over time and location. Understanding these factors contributed to high contaminant levels of wastewaters is important to grow awareness of the impacts of hydraulic fracturing on water quality for both operators and the public. Furthermore, pertinent wastewater management strategies for different purposes are highlighted. Although there is no one-size-fits-all solution, understanding the advantages and limitations of different treatment methods is critical for decision-makers to develop appropriate management system. The aim behind this review is to provide a reference for selecting better and practical solutions for current wastewater issues and identifying key issues for future research.
The large-scale extraction of unconventional resources from shale reservoirs utilizing horizontal hydraulic fracturing has significantly improved economic development in U.S. However, the increased well production has been accompanied by rising concerns about potential impact resulting from excessive freshwater usage and wastewater generation. Currently, water issues have become increasingly challenging with the development of shale reservoirs. In this paper, technical, economic, and environmental challenges encountered during energy production are reviewed with a focus on water issues due to hydraulic fracturing in the U.S. Moreover, the detailed discussion of characteristics and contaminant sources of wastewater indicates the wastewater composition is complicated and varies over time and location. Understanding these factors contributed to high contaminant levels of wastewaters is important to grow awareness of the impacts of hydraulic fracturing on water quality for both operators and the public. Furthermore, pertinent wastewater management strategies for different purposes are highlighted. Although there is no one-size-fits-all solution, understanding the advantages and limitations of different treatment methods is critical for decision-makers to develop appropriate management system. The aim behind this review is to provide a reference for selecting better and practical solutions for current wastewater issues and identifying key issues for future research.
Twelve years of unconventional oil and gas development: production performance and economic analysis
Wigwe et al., February 2021
Twelve years of unconventional oil and gas development: production performance and economic analysis
M. E. Wigwe, A. Giussani, M. C. Watson (2021). International Journal of Energy and Environmental Engineering, . 10.1007/s40095-020-00367-9
Abstract:
Unconventional formations have been actively developed in the US since 2008. However, it is challenging to quantify the impact of technological advancement and geology on production. In addition, the economics of unconventionals is not well-understood. In this paper, we studied five major unconventional formations in the US: the Bakken, Eagleford, Haynesville, Marcellus, and Wolfcamp formations. We used historical data to quantify the impact of technological and geological variations on production. To accomplish this, we identified four phases of unconventional development over the past 12 years during which drilling and completion technology, initial investment, and commodity prices were similar: Phases 1–4. Using statistical analysis, we compared well performance of each phase. Then, we generated type curves for each phase for economic studies. Initial analysis shows that between January 2008 and December 2019, 60,611 horizontal wells were completed in these formations, producing about 8.185 billion barrels of oil, 90 trillion cubic feet of gas, and generating an estimated $816 billion in gross revenue. For the statistical analysis, the level of uncertainty ($${P}_{10}/{P}_{90}$$P10/P90ratio) reduced from Phase 1 to Phase 4 across all formations, suggesting consistent improvements in well productivity over time while county-level analysis shows spatial disparity in well performance. We infer that technology drives temporal changes while geology drives spatial differences in well performance. From economic analysis, Phase 4 type wells had the best production performance, partly, due to improved drilling and completion efficiency. It was also because operators targeted their best acreage to maximize their asset’s potential.
Unconventional formations have been actively developed in the US since 2008. However, it is challenging to quantify the impact of technological advancement and geology on production. In addition, the economics of unconventionals is not well-understood. In this paper, we studied five major unconventional formations in the US: the Bakken, Eagleford, Haynesville, Marcellus, and Wolfcamp formations. We used historical data to quantify the impact of technological and geological variations on production. To accomplish this, we identified four phases of unconventional development over the past 12 years during which drilling and completion technology, initial investment, and commodity prices were similar: Phases 1–4. Using statistical analysis, we compared well performance of each phase. Then, we generated type curves for each phase for economic studies. Initial analysis shows that between January 2008 and December 2019, 60,611 horizontal wells were completed in these formations, producing about 8.185 billion barrels of oil, 90 trillion cubic feet of gas, and generating an estimated $816 billion in gross revenue. For the statistical analysis, the level of uncertainty ($${P}_{10}/{P}_{90}$$P10/P90ratio) reduced from Phase 1 to Phase 4 across all formations, suggesting consistent improvements in well productivity over time while county-level analysis shows spatial disparity in well performance. We infer that technology drives temporal changes while geology drives spatial differences in well performance. From economic analysis, Phase 4 type wells had the best production performance, partly, due to improved drilling and completion efficiency. It was also because operators targeted their best acreage to maximize their asset’s potential.
Shale Particle Interactions with Organic and Inorganic Hydraulic Fracturing Additives
Manz et al., February 2021
Shale Particle Interactions with Organic and Inorganic Hydraulic Fracturing Additives
Katherine E. Manz, Angelica M. Palomino, Howard Cyr, Kimberly E. Carter (2021). Applied Geochemistry, 104901. 10.1016/j.apgeochem.2021.104901
Abstract:
Natural gas, the largest source for electricity generation in the US, is produced via hydraulic fracturing. Fracturing uses water mixed with chemical additives to free natural gas from the shale formation. While downhole, these fluids contact small formation particles produced during well-perforation and remain in contact with the particles until the fluids return to the well surface. We performed experiments to investigate the physical and chemical interactions between Marcellus shale particles and fluid at high temperature (80oC). The treatments in this study include incubating shale particles in solutions containing individual organic and inorganic additives used during fracturing (hydrochloric acid, persulfate, LEB-10X, WGA, FRS, Revert Flow (RF), and BXL). The particles exhibited a measurable influence on flowback fluid chemistry when treated with chemical additives. An optimized methodology was developed for laser-based Particle Size Analysis (PSA) with a wet-dispersion unit that was then used to measure changes in particle size after treatment. The PSA results indicate that mixing speeds >2800 rpm can cause particle breakage and low speeds are required for PSA of shales. We observed no difference in particle size across treatments after incubation, indicating that clay swelling likely occurs during incubation. The influence of contact time was investigated for the inorganic treatments (persulfate and HCl containing treatments) given that these treatments resulted in higher concentrations of element release and precipitation compared to the organics additives tested. The results show that contact time is an essential consideration in shale transformation studies. Our findings link changing water chemistry to specific fracturing additives and provide key information for understanding the fluid-rock interactions.
Natural gas, the largest source for electricity generation in the US, is produced via hydraulic fracturing. Fracturing uses water mixed with chemical additives to free natural gas from the shale formation. While downhole, these fluids contact small formation particles produced during well-perforation and remain in contact with the particles until the fluids return to the well surface. We performed experiments to investigate the physical and chemical interactions between Marcellus shale particles and fluid at high temperature (80oC). The treatments in this study include incubating shale particles in solutions containing individual organic and inorganic additives used during fracturing (hydrochloric acid, persulfate, LEB-10X, WGA, FRS, Revert Flow (RF), and BXL). The particles exhibited a measurable influence on flowback fluid chemistry when treated with chemical additives. An optimized methodology was developed for laser-based Particle Size Analysis (PSA) with a wet-dispersion unit that was then used to measure changes in particle size after treatment. The PSA results indicate that mixing speeds >2800 rpm can cause particle breakage and low speeds are required for PSA of shales. We observed no difference in particle size across treatments after incubation, indicating that clay swelling likely occurs during incubation. The influence of contact time was investigated for the inorganic treatments (persulfate and HCl containing treatments) given that these treatments resulted in higher concentrations of element release and precipitation compared to the organics additives tested. The results show that contact time is an essential consideration in shale transformation studies. Our findings link changing water chemistry to specific fracturing additives and provide key information for understanding the fluid-rock interactions.
Environmental justice expansion in the context of fracking
Susan T. Zimny and Margaret C. Reardon, February 2021
Environmental justice expansion in the context of fracking
Susan T. Zimny and Margaret C. Reardon (2021). Journal of Environmental Studies and Sciences, . 10.1007/s13412-021-00668-3
Abstract:
We investigated the endorsement of an expanded construct of environmental justice (ExEJ) that includes the rights of nature, other species, and future generations. We contextualized this study in terms of the environmental challenges posed by hydraulic fracturing. We used structural equation modeling to test a model that hypothesized that attitudes toward fracking would mediate an endorsement of ExEJ. We tested multiple factors that research suggests contribute to those attitudes using a student and non-student sample from a state experiencing fracking activity. Results suggest that self-transcendent factors directly predicted ExEJ endorsement, while self-focus factors predicted positive attitudes toward fracking, and a varied set of factors predicted a negative fracking attitude. Attitudes had no direct effect on ExEJ. Patterns of result suggest self-transcendent factors and avenues for change facilitate ExEJ, while self-enhancement factors influence positive fracking attitudes. Interpretations of these patterns are offered.
We investigated the endorsement of an expanded construct of environmental justice (ExEJ) that includes the rights of nature, other species, and future generations. We contextualized this study in terms of the environmental challenges posed by hydraulic fracturing. We used structural equation modeling to test a model that hypothesized that attitudes toward fracking would mediate an endorsement of ExEJ. We tested multiple factors that research suggests contribute to those attitudes using a student and non-student sample from a state experiencing fracking activity. Results suggest that self-transcendent factors directly predicted ExEJ endorsement, while self-focus factors predicted positive attitudes toward fracking, and a varied set of factors predicted a negative fracking attitude. Attitudes had no direct effect on ExEJ. Patterns of result suggest self-transcendent factors and avenues for change facilitate ExEJ, while self-enhancement factors influence positive fracking attitudes. Interpretations of these patterns are offered.
Up in smoke: characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US
Cushing et al., February 2021
Up in smoke: characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US
Lara J. Cushing, Khang Chau, Meredith Franklin, Jill E. Johnston (2021). Environmental Research Letters, 034032. 10.1088/1748-9326/abd3d4
Abstract:
Due to advances in unconventional extraction techniques, the rate of fossil fuel production in the United States (US) is higher than ever before. The disposal of waste gas via intentional combustion (flaring) from unconventional oil and gas (UOG) development has also been on the rise, and may expose nearby residents to toxic air pollutants, light pollution and noise. However, little data exists on the extent of flaring in the US or the number of people living near UOG flaring activity. Utilizing nightly sattelite observations of flaring from the Visible Infrared Imaging Radiometer Suite Nightfire product, 2010 Census data and a dataset of remotely sensed building footprints, we applied a dasymetric mapping approach to estimate the number of nightly flare events across all oil shale plays in the contiguous US between March 2012 and February 2020 and characterize the populations residing within 3 km, 5 km and 10 km of UOG flares in terms of age, race and ethnicity. We found that three basins accounted for over 83% of all UOG flaring activity in the contiguous US over the 8 year study period. We estimated that over half a million people in these basins reside within 5 km of a flare, and 39% of them lived near more than 100 nightly flares. Black, indigenous, and people of color were disproportionately exposed to flaring.
Due to advances in unconventional extraction techniques, the rate of fossil fuel production in the United States (US) is higher than ever before. The disposal of waste gas via intentional combustion (flaring) from unconventional oil and gas (UOG) development has also been on the rise, and may expose nearby residents to toxic air pollutants, light pollution and noise. However, little data exists on the extent of flaring in the US or the number of people living near UOG flaring activity. Utilizing nightly sattelite observations of flaring from the Visible Infrared Imaging Radiometer Suite Nightfire product, 2010 Census data and a dataset of remotely sensed building footprints, we applied a dasymetric mapping approach to estimate the number of nightly flare events across all oil shale plays in the contiguous US between March 2012 and February 2020 and characterize the populations residing within 3 km, 5 km and 10 km of UOG flares in terms of age, race and ethnicity. We found that three basins accounted for over 83% of all UOG flaring activity in the contiguous US over the 8 year study period. We estimated that over half a million people in these basins reside within 5 km of a flare, and 39% of them lived near more than 100 nightly flares. Black, indigenous, and people of color were disproportionately exposed to flaring.
Assessment of UV Disinfection and Advanced Oxidation Processes for Treatment and Reuse of Hydraulic Fracturing Produced Water
Vinge et al., January 2021
Assessment of UV Disinfection and Advanced Oxidation Processes for Treatment and Reuse of Hydraulic Fracturing Produced Water
Sydney L. Vinge, James S. Rosenblum, Yarrow S. Linden, Adrian Saenz, Natalie M. Hull, Karl G. Linden (2021). ACS ES&T Engineering, . 10.1021/acsestengg.0c00170
Abstract:
This research assessed the efficacy of UV and UV advanced oxidation processes (UV/AOPs) to reduce dissolved organic carbon (DOC), total petroleum hydrocarbons (TPH), and microorganisms in hydraulic fracturing produced water. To improve water quality conditions before UV treatment with and without added hydrogen peroxide (UV/H2O2), produced water was treated with coagulation, flocculation, and sedimentation (CFS) and biologically activated carbon filtration (BACF). BACF was more effective than CFS as a pre-UV and UV/AOP treatment strategy and reduced DOC, TPH, and absorbing species by over 70% which, subsequently, resulted in the highest hydroxyl radical steady-state concentrations during UV and UV/H2O2 experiments. UV alone minimally degraded DOC, while UV/H2O2 improved DOC and TPH degradation by 9% to 36%. Interestingly, UV without added H2O2 created an in situ AOP by generating hydroxyl radicals with similar steady-state concentrations to that of UV/H2O2. UV was found to be highly effective for the inactivation of microorganisms that were cultured in produced water by reducing microbial communities dominated by Citrobacter by 4 logs after only 30 mJ/cm2. Together, these results demonstrate UV/AOP as a potential strategy to not only improve the treatment and reuse of produced water but also reduce biocide use in fracturing fluids.
This research assessed the efficacy of UV and UV advanced oxidation processes (UV/AOPs) to reduce dissolved organic carbon (DOC), total petroleum hydrocarbons (TPH), and microorganisms in hydraulic fracturing produced water. To improve water quality conditions before UV treatment with and without added hydrogen peroxide (UV/H2O2), produced water was treated with coagulation, flocculation, and sedimentation (CFS) and biologically activated carbon filtration (BACF). BACF was more effective than CFS as a pre-UV and UV/AOP treatment strategy and reduced DOC, TPH, and absorbing species by over 70% which, subsequently, resulted in the highest hydroxyl radical steady-state concentrations during UV and UV/H2O2 experiments. UV alone minimally degraded DOC, while UV/H2O2 improved DOC and TPH degradation by 9% to 36%. Interestingly, UV without added H2O2 created an in situ AOP by generating hydroxyl radicals with similar steady-state concentrations to that of UV/H2O2. UV was found to be highly effective for the inactivation of microorganisms that were cultured in produced water by reducing microbial communities dominated by Citrobacter by 4 logs after only 30 mJ/cm2. Together, these results demonstrate UV/AOP as a potential strategy to not only improve the treatment and reuse of produced water but also reduce biocide use in fracturing fluids.
After the dust settles: Community resilience legacies of unconventional gas development
Hanabeth Luke and Darrick Evensen, January 2021
After the dust settles: Community resilience legacies of unconventional gas development
Hanabeth Luke and Darrick Evensen (2021). The Extractive Industries and Society, . 10.1016/j.exis.2020.12.004
Abstract:
This paper explores the socio-economic legacy created by an extractive industry as it developed, or sought to develop, in nine different communities or regions across Australia, Canada, the United States, and Wales – drawing on mixed-method research collected between 2011 and 2018. By the early 2010s, a number of unconventional fossil fuel companies were securing land access agreements for seismic and drilling exploration in the Western Downs region of South-East Queensland, the Northern Rivers region of North-Eastern New South Wales, the states of New York and Pennsylvania, the Province of New Brunswick, and southern Wales. Stark cultural, social and environmental contrasts between communities within each nation shaped community responses to potential industry development – levels of social license for developments, community responses and subsequent unconventional fossil fuel development varied widely. This article explores the impact of the industry on community resilience. A resilient community is likely to have high social capital, including strong social networks, feelings of safety and trust, sense of belonging, diversity, citizen power and participation. These social responses to the industry, combined with the existing local contexts and the differing regulatory frameworks of each community/region, can be argued to have led to divergent effects on overall community social and economic resilience across our case studies. Power, industrial impacts, relationships, resources, social action, timing of the debates, equity concerns, and strategic decision making (or lack thereof) shaped the degree of resilience with which each community/region responded. In four of our cases, resilience declined (e.g., due to increased economic homogenisation, decreasing social connectivity and citizen power); in five cases resilience increased (e.g., the legacy created by the emergence of social movements substantially increased social connectivity, sense of belonging and citizen power).
This paper explores the socio-economic legacy created by an extractive industry as it developed, or sought to develop, in nine different communities or regions across Australia, Canada, the United States, and Wales – drawing on mixed-method research collected between 2011 and 2018. By the early 2010s, a number of unconventional fossil fuel companies were securing land access agreements for seismic and drilling exploration in the Western Downs region of South-East Queensland, the Northern Rivers region of North-Eastern New South Wales, the states of New York and Pennsylvania, the Province of New Brunswick, and southern Wales. Stark cultural, social and environmental contrasts between communities within each nation shaped community responses to potential industry development – levels of social license for developments, community responses and subsequent unconventional fossil fuel development varied widely. This article explores the impact of the industry on community resilience. A resilient community is likely to have high social capital, including strong social networks, feelings of safety and trust, sense of belonging, diversity, citizen power and participation. These social responses to the industry, combined with the existing local contexts and the differing regulatory frameworks of each community/region, can be argued to have led to divergent effects on overall community social and economic resilience across our case studies. Power, industrial impacts, relationships, resources, social action, timing of the debates, equity concerns, and strategic decision making (or lack thereof) shaped the degree of resilience with which each community/region responded. In four of our cases, resilience declined (e.g., due to increased economic homogenisation, decreasing social connectivity and citizen power); in five cases resilience increased (e.g., the legacy created by the emergence of social movements substantially increased social connectivity, sense of belonging and citizen power).
Exploration of unconventional oil and gas (UOAG) development on farmland: Findings from the Bakken shale of North Dakota
Felix N. Fernando and Jon A. Stika, January 2021
Exploration of unconventional oil and gas (UOAG) development on farmland: Findings from the Bakken shale of North Dakota
Felix N. Fernando and Jon A. Stika (2021). The Extractive Industries and Society, . 10.1016/j.exis.2021.01.001
Abstract:
Few studies have examined the land use, fragmentation, and conversion impacts from siting unconventional oil and gas wells on farmland. This exploratory GIS study examined these issues in the Bakken shale region in North Dakota. A total of 3,577 well pads containing 6,201 wells located on farmland were digitized and examined in this study. The findings indicate that in addition to land used for agricultural purposes (such as cropland and rangeland), other land types such as native woodlands and wetlands have also been converted to well pads and associated infrastructure. The single-well and multi-well pad footprints in this study were higher than the industrial estimates. The overall average well pad footprint is 6.45 acres while the average single-well pad and multi-well pad footprint is 5.26 acres and 8.60 acres, respectively. Eighty two percent of well pads had 1-2 wells sited on them. The findings show that the well pad footprint differed based on whether the well pad was located in a core or periphery county, on rangeland or cropland, and that single-well well pad footprint increased over time. Several issues that require further research are outlined.
Few studies have examined the land use, fragmentation, and conversion impacts from siting unconventional oil and gas wells on farmland. This exploratory GIS study examined these issues in the Bakken shale region in North Dakota. A total of 3,577 well pads containing 6,201 wells located on farmland were digitized and examined in this study. The findings indicate that in addition to land used for agricultural purposes (such as cropland and rangeland), other land types such as native woodlands and wetlands have also been converted to well pads and associated infrastructure. The single-well and multi-well pad footprints in this study were higher than the industrial estimates. The overall average well pad footprint is 6.45 acres while the average single-well pad and multi-well pad footprint is 5.26 acres and 8.60 acres, respectively. Eighty two percent of well pads had 1-2 wells sited on them. The findings show that the well pad footprint differed based on whether the well pad was located in a core or periphery county, on rangeland or cropland, and that single-well well pad footprint increased over time. Several issues that require further research are outlined.
Halogen Radicals Contribute to the Halogenation and Degradation of Chemical Additives Used in Hydraulic Fracturing
Chen et al., January 2021
Halogen Radicals Contribute to the Halogenation and Degradation of Chemical Additives Used in Hydraulic Fracturing
Moshan Chen, Carter A. Rholl, Tianchen He, Aditi Sharma, Kimberly M. Parker (2021). Environmental Science & Technology, . 10.1021/acs.est.0c03685
Abstract:
In hydraulic fracturing fluids, the oxidant persulfate is used to generate sulfate radical to break down polymer-based gels. However, sulfate radical may be scavenged by high concentrations of halides in hydraulic fracturing fluids, producing halogen radicals (e.g., Cl•, Cl2•–, Br•, Br2•–, and BrCl•–). In this study, we investigated how halogen radicals alter the mechanisms and kinetics of the degradation of organic chemicals in hydraulic fracturing fluids. Using a radical scavenger (i.e., isopropanol), we determined that halogenated products of additives such as cinnamaldehyde (i.e., α-chlorocinnamaldehyde and α-bromocinnamaldehyde) and citrate (i.e., trihalomethanes) were generated via a pathway involving halogen radicals. We next investigated the impact of halogen radicals on cinnamaldehyde degradation rates. The conversion of sulfate radicals to halogen radicals may result in selective degradation of organic compounds. Surprisingly, we found that the addition of halides to convert sulfate radicals to halogen radicals did not result in selective degradation of cinnamaldehyde over other compounds (i.e., benzoate and guar), which may challenge the application of radical selectivity experiments to more complex molecules. Overall, we find that halogen radicals, known to react in advanced oxidative treatment and sunlight photochemistry, also contribute to the unintended degradation and halogenation of additives in hydraulic fracturing fluids.
In hydraulic fracturing fluids, the oxidant persulfate is used to generate sulfate radical to break down polymer-based gels. However, sulfate radical may be scavenged by high concentrations of halides in hydraulic fracturing fluids, producing halogen radicals (e.g., Cl•, Cl2•–, Br•, Br2•–, and BrCl•–). In this study, we investigated how halogen radicals alter the mechanisms and kinetics of the degradation of organic chemicals in hydraulic fracturing fluids. Using a radical scavenger (i.e., isopropanol), we determined that halogenated products of additives such as cinnamaldehyde (i.e., α-chlorocinnamaldehyde and α-bromocinnamaldehyde) and citrate (i.e., trihalomethanes) were generated via a pathway involving halogen radicals. We next investigated the impact of halogen radicals on cinnamaldehyde degradation rates. The conversion of sulfate radicals to halogen radicals may result in selective degradation of organic compounds. Surprisingly, we found that the addition of halides to convert sulfate radicals to halogen radicals did not result in selective degradation of cinnamaldehyde over other compounds (i.e., benzoate and guar), which may challenge the application of radical selectivity experiments to more complex molecules. Overall, we find that halogen radicals, known to react in advanced oxidative treatment and sunlight photochemistry, also contribute to the unintended degradation and halogenation of additives in hydraulic fracturing fluids.
Electrochemical technologies for treating petroleum industry wastewater
Treviño-Reséndez et al., January 2021
Electrochemical technologies for treating petroleum industry wastewater
Josacio Sirrc Treviño-Reséndez, Alejandro Medel, Yunny Meas (2021). Current Opinion in Electrochemistry, 100690. 10.1016/j.coelec.2021.100690
Abstract:
This review focuses on recent developments in electrochemical technology (with special emphasis on electrocoagulation, electro-oxidation, and electro-Fenton) to treat petroleum industry effluents (offshore and hydraulic fracturing extraction, as well as refinery effluents). In addition, an overview is given of what these processes face to position themselves as consolidated technologies.
This review focuses on recent developments in electrochemical technology (with special emphasis on electrocoagulation, electro-oxidation, and electro-Fenton) to treat petroleum industry effluents (offshore and hydraulic fracturing extraction, as well as refinery effluents). In addition, an overview is given of what these processes face to position themselves as consolidated technologies.
Enzyme biotechnology development for treating polymers in hydraulic fracturing operations
Scheffer et al., January 2021
Enzyme biotechnology development for treating polymers in hydraulic fracturing operations
Gabrielle Scheffer, Carolina Berdugo-Clavijo, Arindom Sen, Lisa M. Gieg (2021). Microbial Biotechnology, . 10.1111/1751-7915.13727
Abstract:
Carboxymethyl cellulose (CMC) is a polymer used in many different industrial sectors. In the oil and gas industry, CMC is often used during hydraulic fracturing (fracking) operations as a thickening agent for effective proppant delivery. Accumulations of CMC at fracture faces (known as filter cakes) can impede oil and gas recovery. Although chemical oxidizers are added to disrupt these accumulations, there is industrial interest in developing alternative, enzyme-based treatments. Little is known about CMC biodegradation under fracking conditions. Here, we enriched a methanogenic CMC-degrading culture and demonstrated its ability to enzymatically utilize CMC under the conditions that typify oil fields. Using the extracellular enzyme fraction from the culture, significant CMC viscosity reduction was observed between 50 and 80˚C, at salinities up to 20% (w/v) and at pH 5-8 compared to controls. Similar levels of viscosity reduction by extracellular enzymes were observed under oxic and anoxic conditions. This proof-of-concept study demonstrates that enzyme biotechnology holds great promise as a viable approach to treating CMC filter cakes under oilfield conditions.
Carboxymethyl cellulose (CMC) is a polymer used in many different industrial sectors. In the oil and gas industry, CMC is often used during hydraulic fracturing (fracking) operations as a thickening agent for effective proppant delivery. Accumulations of CMC at fracture faces (known as filter cakes) can impede oil and gas recovery. Although chemical oxidizers are added to disrupt these accumulations, there is industrial interest in developing alternative, enzyme-based treatments. Little is known about CMC biodegradation under fracking conditions. Here, we enriched a methanogenic CMC-degrading culture and demonstrated its ability to enzymatically utilize CMC under the conditions that typify oil fields. Using the extracellular enzyme fraction from the culture, significant CMC viscosity reduction was observed between 50 and 80˚C, at salinities up to 20% (w/v) and at pH 5-8 compared to controls. Similar levels of viscosity reduction by extracellular enzymes were observed under oxic and anoxic conditions. This proof-of-concept study demonstrates that enzyme biotechnology holds great promise as a viable approach to treating CMC filter cakes under oilfield conditions.
A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems
Khan et al., January 2021
A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems
Hasan Javed Khan, Eleanor Spielman-Sun, Adam D. Jew, John Bargar, Anthony Kovscek, Jennifer L. Druhan (2021). Environmental Science & Technology, . 10.1021/acs.est.0c04901
Abstract:
Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH’s to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas “flowback” water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.
Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH’s to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas “flowback” water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.
“It’s our future” : Youth and fracking justice in England
Dunlop et al., January 2021
“It’s our future” : Youth and fracking justice in England
Lynda Dunlop, Lucy Atkinson, Maria Gertrudis Wilhelmina Turkenburg (2021). Local Environment: The International Journal of Justice and Sustainability, 110-130. 10.1021/acs.est.0c04901
Abstract:
Youth perspectives on energy interventions are rarely sought or acted on in local and national policy, despite the stake young people have in the future created by today’s energy and environmental policies. The debate on unconventional shale gas development (hydraulic fracturing, or ‘fracking’) is one context in which decisions taken today have long-term, intergenerational consequences, with environmental justice intersecting with energy needs. This study investigated young people’s perceptions and experiences of exploratory fracking and associated political processes in order to understand their experiences of environmental justice. In depth, qualitative field research was conducted with 84 young people in locations within 20 miles (32 kilometers) of operational exploratory fracking sites prior to the moratorium in England announced in November 2019. Data were analysed with attention to recognition, participation and distributional justice. Young people experienced environmental, democratic and social injustices through lack of recognition of their aims and values as both youth and members of a rural community, and exclusion from formal participation in decision-making. Young people saw economic and thus environmental power residing with industry closely tied to national government, and experienced a tension between desire to trust institutional authority and betrayal by these same institutions. We argue that this case study of young people in ‘the sacrifice zone’ demonstrates a connection between depoliticisation and anti-politics, and that these processes undermine trust in democracy. There is a need for recognition and meaningful inclusion of young people and local communities in decision-making, particularly where the consequences of the decisions last for generations.
Youth perspectives on energy interventions are rarely sought or acted on in local and national policy, despite the stake young people have in the future created by today’s energy and environmental policies. The debate on unconventional shale gas development (hydraulic fracturing, or ‘fracking’) is one context in which decisions taken today have long-term, intergenerational consequences, with environmental justice intersecting with energy needs. This study investigated young people’s perceptions and experiences of exploratory fracking and associated political processes in order to understand their experiences of environmental justice. In depth, qualitative field research was conducted with 84 young people in locations within 20 miles (32 kilometers) of operational exploratory fracking sites prior to the moratorium in England announced in November 2019. Data were analysed with attention to recognition, participation and distributional justice. Young people experienced environmental, democratic and social injustices through lack of recognition of their aims and values as both youth and members of a rural community, and exclusion from formal participation in decision-making. Young people saw economic and thus environmental power residing with industry closely tied to national government, and experienced a tension between desire to trust institutional authority and betrayal by these same institutions. We argue that this case study of young people in ‘the sacrifice zone’ demonstrates a connection between depoliticisation and anti-politics, and that these processes undermine trust in democracy. There is a need for recognition and meaningful inclusion of young people and local communities in decision-making, particularly where the consequences of the decisions last for generations.
Environmental risks of shale gas exploitation and solutions for clean shale gas production in China
Gao et al., January 2021
Environmental risks of shale gas exploitation and solutions for clean shale gas production in China
Shikui Gao, Quanzhong Guan, Dazhong Dong, Fang Huang (2021). Frontiers of Earth Science, . 10.1007/s11707-020-0850-0
Abstract:
Shale gas is a relatively clean-burning fossil fuel, produced by hydraulic fracturing. This technology may be harmful to the environment; therefore, environmentally friendly methods to extract shale gas have attracted considerable attention from researchers. Unlike previous studies, this study is a comprehensive investigation that uses systematic analyses and detailed field data. The environmental challenges associated with shale gas extraction, as well as measures to mitigate environmental impacts from the source to end point are detailed, using data and experience from China’s shale gas production sites. Environmental concerns are among the biggest challenges in practice, mainly including seasonal water shortages, requisition of primary farmland, leakage of drilling fluid and infiltration of flowback fluid, oil-based drill cuttings getting buried underground, and induced seismicity. China’s shale gas companies have attempted to improve methods, as well as invent new materials and devices to implement cleaner processes for the sake of protecting the environment. Through more than 10-year summary, China’s clean production model for shale gas focuses on source pollution prevention, process control, and end treatment, which yield significant results in terms of resource as well as environmental protection, and can have practical implications for shale gas production in other countries, that can be duplicated elsewhere.
Shale gas is a relatively clean-burning fossil fuel, produced by hydraulic fracturing. This technology may be harmful to the environment; therefore, environmentally friendly methods to extract shale gas have attracted considerable attention from researchers. Unlike previous studies, this study is a comprehensive investigation that uses systematic analyses and detailed field data. The environmental challenges associated with shale gas extraction, as well as measures to mitigate environmental impacts from the source to end point are detailed, using data and experience from China’s shale gas production sites. Environmental concerns are among the biggest challenges in practice, mainly including seasonal water shortages, requisition of primary farmland, leakage of drilling fluid and infiltration of flowback fluid, oil-based drill cuttings getting buried underground, and induced seismicity. China’s shale gas companies have attempted to improve methods, as well as invent new materials and devices to implement cleaner processes for the sake of protecting the environment. Through more than 10-year summary, China’s clean production model for shale gas focuses on source pollution prevention, process control, and end treatment, which yield significant results in terms of resource as well as environmental protection, and can have practical implications for shale gas production in other countries, that can be duplicated elsewhere.
Environmental issues related to fracking
S W Carmalt and Andrea Moscariello, January 2021
Environmental issues related to fracking
S W Carmalt and Andrea Moscariello (2021). The Journal of World Energy Law & Business, . 10.1093/jwelb/jwaa039
Abstract:
Hydraulic fracturing or ‘fracking’ overlays a major industrial operation on the land in areas where shale and tight hydrocarbon resources can be exploited. Every aspect of the fracking operation can cause environmental damage, although the damage from any individual well is both unlikely and usually fairly limited. Such damage has been extensively documented, giving the impression that fracking activity is bad for the environment. There is no yes or no answer to the question ‘Is fracking harmful to the environment’; rather, it is an issue that must be resolved politically rather than scientifically.
Hydraulic fracturing or ‘fracking’ overlays a major industrial operation on the land in areas where shale and tight hydrocarbon resources can be exploited. Every aspect of the fracking operation can cause environmental damage, although the damage from any individual well is both unlikely and usually fairly limited. Such damage has been extensively documented, giving the impression that fracking activity is bad for the environment. There is no yes or no answer to the question ‘Is fracking harmful to the environment’; rather, it is an issue that must be resolved politically rather than scientifically.
Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado
Stanish et al., January 2021
Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado
Lee F. Stanish, Owen A. Sherwood, Greg Lackey, Stephen Osborn, Charles E. Robertson, J. Kirk Harris, Norman Pace, Joseph N. Ryan (2021). Environmental Science & Technology, 292-303. 10.1021/acs.est.0c04228
Abstract:
The presence of methane and other hydrocarbons in domestic-use groundwater aquifers poses significant environmental and human health concerns. Isotopic measurements are often relied upon as indicators of groundwater aquifer contamination with methane. While these parameters are used to infer microbial metabolisms, there is growing evidence that isotopes present an incomplete picture of subsurface microbial processes. This study examined the relationships between microbiology and chemistry in groundwater wells located in the Denver-Julesburg Basin of Colorado, a rapidly urbanizing area with active oil and gas development. A primary goal was to determine if microbial data can reliably indicate the quantities and sources of groundwater methane. Comprehensive chemical and molecular analyses were performed on 39 groundwater well samples from five aquifers. Elevated methane concentrations were found in only one aquifer, and both isotopic and microbial data support a microbial origin. Microbial parameters had similar explanatory power as chemical parameters for predicting sample methane concentrations. Furthermore, a subset of samples with unique microbiology corresponded with unique chemical signatures that may be useful indicators of methane gas migration, potentially from nearby coal seams interacting with the aquifer. Microbial data may allow for more accurate determination of groundwater contamination and improved long-term water quality monitoring compared solely to isotopic and chemical data in areas with microbial methane.
The presence of methane and other hydrocarbons in domestic-use groundwater aquifers poses significant environmental and human health concerns. Isotopic measurements are often relied upon as indicators of groundwater aquifer contamination with methane. While these parameters are used to infer microbial metabolisms, there is growing evidence that isotopes present an incomplete picture of subsurface microbial processes. This study examined the relationships between microbiology and chemistry in groundwater wells located in the Denver-Julesburg Basin of Colorado, a rapidly urbanizing area with active oil and gas development. A primary goal was to determine if microbial data can reliably indicate the quantities and sources of groundwater methane. Comprehensive chemical and molecular analyses were performed on 39 groundwater well samples from five aquifers. Elevated methane concentrations were found in only one aquifer, and both isotopic and microbial data support a microbial origin. Microbial parameters had similar explanatory power as chemical parameters for predicting sample methane concentrations. Furthermore, a subset of samples with unique microbiology corresponded with unique chemical signatures that may be useful indicators of methane gas migration, potentially from nearby coal seams interacting with the aquifer. Microbial data may allow for more accurate determination of groundwater contamination and improved long-term water quality monitoring compared solely to isotopic and chemical data in areas with microbial methane.
Methane Emissions from Abandoned Oil and Gas Wells in Canada and the United States
Williams et al., January 2021
Methane Emissions from Abandoned Oil and Gas Wells in Canada and the United States
James P. Williams, Amara Regehr, Mary Kang (2021). Environmental Science & Technology, 563-570. 10.1021/acs.est.0c04265
Abstract:
Abandoned oil and gas wells are one of the most uncertain sources of methane emissions into the atmosphere. To reduce these uncertainties and improve emission estimates, we geospatially and statistically analyze 598 direct methane emission measurements from abandoned oil and gas wells and aggregate well counts from regional databases for the United States (U.S.) and Canada. We estimate the number of abandoned wells to be at least 4,000,000 wells for the U.S. and at least 370,000 for Canada. Methane emission factors range from 1.8 × 10–3 g/h to 48 g/h per well depending on the plugging status, well type, and region, with the overall average at 6.0 g/h. We find that annual methane emissions from abandoned wells are underestimated by 150% in Canada and by 20% in the U.S. Even with the inclusion of two to three times more measurement data than used in current inventory estimates, we find that abandoned wells remain the most uncertain methane source in the U.S. and become the most uncertain source in Canada. Understanding methane emissions from abandoned oil and gas wells can provide critical insights into broader environmental impacts of abandoned wells, which are rapidly growing in number around the world.
Abandoned oil and gas wells are one of the most uncertain sources of methane emissions into the atmosphere. To reduce these uncertainties and improve emission estimates, we geospatially and statistically analyze 598 direct methane emission measurements from abandoned oil and gas wells and aggregate well counts from regional databases for the United States (U.S.) and Canada. We estimate the number of abandoned wells to be at least 4,000,000 wells for the U.S. and at least 370,000 for Canada. Methane emission factors range from 1.8 × 10–3 g/h to 48 g/h per well depending on the plugging status, well type, and region, with the overall average at 6.0 g/h. We find that annual methane emissions from abandoned wells are underestimated by 150% in Canada and by 20% in the U.S. Even with the inclusion of two to three times more measurement data than used in current inventory estimates, we find that abandoned wells remain the most uncertain methane source in the U.S. and become the most uncertain source in Canada. Understanding methane emissions from abandoned oil and gas wells can provide critical insights into broader environmental impacts of abandoned wells, which are rapidly growing in number around the world.
Prominent Safety and Health Hazards During Crude Extraction: A Review of Process
Yadav et al., January 2021
Prominent Safety and Health Hazards During Crude Extraction: A Review of Process
Umang Kumar Yadav, Rishi Dewan, Nikhil Verma, Abhijeet Singh (2021). Journal of Failure Analysis and Prevention, . 10.1007/s11668-020-01083-6
Abstract:
The oil and gas industry is variably classified in upstream sector and downstream sector, with both sectors having exposure to a good number of hazards. The crude oil extraction process is one of the prime objectives of the upstream sector which includes the exploration of the crude, subsequent drilling operation and maximum recovery of the crude oil and gas from the site of operation. The uncontrolled flow of hydrocarbon in well may lead to blowout and will probably have environmental impact; thus, the extraction process can have a huge impact on the elements of earth, which include the soil (area of exploration and production), water and air. Approximately on global scale, there are forty-thousand crude oil sites and millions of people work or live in nearby vicinity; and workers associated with the job will be largely influenced in regard of their safety and health. On comparison of O & G extraction industry with the construction industry, the fatality rate goes up by 2.5 times (Goldberg and Moye in the first hundred years of the Bureau of Labor Statistics. US Department of Labor, 1985), as exposure to hazards like noise, radiation, H2S, crystalline silica is significant. In the article further, we review the safety hazards and health hazards associated with the extraction of the crude along with assessing the probable causes of the fatal incidents and exposure to hazardous substances. Workers involved in crude extraction process have potential impact on their health such as loss of immunity, cancerous cell development, liver and respiratory tract damage and neurological disorders.
The oil and gas industry is variably classified in upstream sector and downstream sector, with both sectors having exposure to a good number of hazards. The crude oil extraction process is one of the prime objectives of the upstream sector which includes the exploration of the crude, subsequent drilling operation and maximum recovery of the crude oil and gas from the site of operation. The uncontrolled flow of hydrocarbon in well may lead to blowout and will probably have environmental impact; thus, the extraction process can have a huge impact on the elements of earth, which include the soil (area of exploration and production), water and air. Approximately on global scale, there are forty-thousand crude oil sites and millions of people work or live in nearby vicinity; and workers associated with the job will be largely influenced in regard of their safety and health. On comparison of O & G extraction industry with the construction industry, the fatality rate goes up by 2.5 times (Goldberg and Moye in the first hundred years of the Bureau of Labor Statistics. US Department of Labor, 1985), as exposure to hazards like noise, radiation, H2S, crystalline silica is significant. In the article further, we review the safety hazards and health hazards associated with the extraction of the crude along with assessing the probable causes of the fatal incidents and exposure to hazardous substances. Workers involved in crude extraction process have potential impact on their health such as loss of immunity, cancerous cell development, liver and respiratory tract damage and neurological disorders.
Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: Mapping the implications
Zoya Banan and Jeremy M. Gernand, January 2021
Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: Mapping the implications
Zoya Banan and Jeremy M. Gernand (2021). Energy Policy, 111979. 10.1016/j.enpol.2020.111979
Abstract:
Over the past decade, the shale gas boom has led to increasing public concerns regarding communities' exposure to air pollutants from shale gas development resulting in concentrations higher than the EPA's National Ambient Air Quality Standards. This study investigates the sufficiency of current policy in Pennsylvania to protect people from exposure to fine particulate matter (PM2.5) emissions from such development. We used a Gaussian plume model to simulate PM2.5 concentrations over the Marcellus shale region of Pennsylvania, and using census block data, we estimated the potential number of people who experienced exceedance of the PM2.5 standard between 2005 and 2017. Results demonstrate that these emissions could increase the number of exceedances by more than 36,000 persons in a single year which is almost 1% of the Marcellus shale regional population in Pennsylvania. This number has largely been proportional to the overall number of developed wells, but development histories show that similar levels of development could occur with reduced population exposure. Setback policy is shown to be an effective method to reduce exposure exceedances, but results suggest that it should be revised based on the number of wells per wellpad as well as the local conditions to further limit air quality impacts.
Over the past decade, the shale gas boom has led to increasing public concerns regarding communities' exposure to air pollutants from shale gas development resulting in concentrations higher than the EPA's National Ambient Air Quality Standards. This study investigates the sufficiency of current policy in Pennsylvania to protect people from exposure to fine particulate matter (PM2.5) emissions from such development. We used a Gaussian plume model to simulate PM2.5 concentrations over the Marcellus shale region of Pennsylvania, and using census block data, we estimated the potential number of people who experienced exceedance of the PM2.5 standard between 2005 and 2017. Results demonstrate that these emissions could increase the number of exceedances by more than 36,000 persons in a single year which is almost 1% of the Marcellus shale regional population in Pennsylvania. This number has largely been proportional to the overall number of developed wells, but development histories show that similar levels of development could occur with reduced population exposure. Setback policy is shown to be an effective method to reduce exposure exceedances, but results suggest that it should be revised based on the number of wells per wellpad as well as the local conditions to further limit air quality impacts.
High Ethylene and Propylene in an Area Dominated by Oil Production
Lyman et al., January 2021
High Ethylene and Propylene in an Area Dominated by Oil Production
Seth N. Lyman, Makenzie L. Holmes, Huy N. Q. Tran, Trang Tran, Trevor O’Neil (2021). Atmosphere, 1. 10.3390/atmos12010001
Abstract:
We measured the spatial distribution and composition of ozone-forming hydrocarbons, alcohols, and carbonyls in Utah’s Uinta Basin during the winter months of 2019 and 2020. The Uinta Basin contains about 10,000 producing oil and gas wells. Snow cover and the region’s unique topography (i.e., a large basin entirely surrounded by mountains) promote strong, multi-day temperature inversion episodes that concentrate pollution and lead to wintertime ozone production. Indeed, organic compound concentrations were about eight times higher during inversion episodes than during snow-free springtime conditions. We examined spatial associations between wintertime concentrations of organics and oil and gas sources in the region, and we found that concentrations of highly reactive alkenes were higher in areas with dense oil production than in areas with dense gas production. Total alkene+acetylene concentrations were 267 (42, 1146; lower and upper 95% confidence limits) µg m−3 at locations with 340 or more producing oil wells within 10 km (i.e., 75th percentile) versus 12 (9, 23) µg m−3 at locations with 15 or fewer oil wells (i.e., 25th percentile). Twenty-eight percent of the potential for organic compounds to produce ozone was due to alkenes in areas with dense oil production. Spatial correlations and organic compound ratios indicated that the most likely source of excess alkenes in oil-producing areas was natural gas-fueled engines, especially lean-burning (i.e., high air:fuel ratio) artificial lift engines.
We measured the spatial distribution and composition of ozone-forming hydrocarbons, alcohols, and carbonyls in Utah’s Uinta Basin during the winter months of 2019 and 2020. The Uinta Basin contains about 10,000 producing oil and gas wells. Snow cover and the region’s unique topography (i.e., a large basin entirely surrounded by mountains) promote strong, multi-day temperature inversion episodes that concentrate pollution and lead to wintertime ozone production. Indeed, organic compound concentrations were about eight times higher during inversion episodes than during snow-free springtime conditions. We examined spatial associations between wintertime concentrations of organics and oil and gas sources in the region, and we found that concentrations of highly reactive alkenes were higher in areas with dense oil production than in areas with dense gas production. Total alkene+acetylene concentrations were 267 (42, 1146; lower and upper 95% confidence limits) µg m−3 at locations with 340 or more producing oil wells within 10 km (i.e., 75th percentile) versus 12 (9, 23) µg m−3 at locations with 15 or fewer oil wells (i.e., 25th percentile). Twenty-eight percent of the potential for organic compounds to produce ozone was due to alkenes in areas with dense oil production. Spatial correlations and organic compound ratios indicated that the most likely source of excess alkenes in oil-producing areas was natural gas-fueled engines, especially lean-burning (i.e., high air:fuel ratio) artificial lift engines.
The Impact of Shale Oil and Gas Development on Rangelands in the Permian Basin Region: An Assessment Using High-Resolution Remote Sensing Data
Haoying Wang, January 1970
The Impact of Shale Oil and Gas Development on Rangelands in the Permian Basin Region: An Assessment Using High-Resolution Remote Sensing Data
Haoying Wang (1970). Remote Sensing, 824. 10.3390/rs13040824
Abstract:
The environmental impact of shale energy development is a growing concern in the US and worldwide. Although the topic is well-studied in general, shale development’s impact on drylands has received much less attention in the literature. This study focuses on the effect of shale development on land cover in the Permian Basin region—a unique arid/semi-arid landscape experiencing an unprecedented intensity of drilling and production activities. By taking advantage of the high-resolution remote sensing land cover data, we develop a fixed-effects panel (longitudinal) data regression model to control unobserved spatial heterogeneities and regionwide trends. The model allows us to understand the land cover’s dynamics over the past decade of shale development. The results show that shale development had moderate negative but statistically significant impacts on shrubland and grassland/pasture. The effect is more strongly associated with the hydrocarbon production volume and less with the number of oil and gas wells drilled. Between shrubland and grassland/pasture, the impact on shrubland is more pronounced in terms of magnitude. The dominance of shrubland in the region likely explains the result.
The environmental impact of shale energy development is a growing concern in the US and worldwide. Although the topic is well-studied in general, shale development’s impact on drylands has received much less attention in the literature. This study focuses on the effect of shale development on land cover in the Permian Basin region—a unique arid/semi-arid landscape experiencing an unprecedented intensity of drilling and production activities. By taking advantage of the high-resolution remote sensing land cover data, we develop a fixed-effects panel (longitudinal) data regression model to control unobserved spatial heterogeneities and regionwide trends. The model allows us to understand the land cover’s dynamics over the past decade of shale development. The results show that shale development had moderate negative but statistically significant impacts on shrubland and grassland/pasture. The effect is more strongly associated with the hydrocarbon production volume and less with the number of oil and gas wells drilled. Between shrubland and grassland/pasture, the impact on shrubland is more pronounced in terms of magnitude. The dominance of shrubland in the region likely explains the result.
Evaluating Potential for Groundwater Contamination from Surface Spills Associated with Unconventional Oil and Gas Production: Methodology and Application to the South Platte Alluvial Aquifer
Cynthia Mai Kanno and John E. McCray, January 1970
Evaluating Potential for Groundwater Contamination from Surface Spills Associated with Unconventional Oil and Gas Production: Methodology and Application to the South Platte Alluvial Aquifer
Cynthia Mai Kanno and John E. McCray (1970). Water, 353. 10.3390/w13030353
Abstract:
Surface spills occur frequently during unconventional oil and gas production operations and have the potential to impact groundwater quality. A screening-level analysis using contaminant fate and transport simulations was performed to: (1) evaluate whether hypothetical (yet realistic) spills of aqueous produced fluids pose risks to groundwater quality in the South Platte Aquifer, (2) identify the key hydrologic and transport factors that determine these risks, and (3) develop a screening-level methodology that could be applied for other sites and pollutants. This assessment considered a range of representative hydrologic conditions and transport behavior for benzene, a regulated pollutant in production fluids. Realistic spill volumes and areas were determined using publicly available data collected by Colorado’s regulatory agency. Risk of groundwater pollution was based on predicted benzene concentrations at the groundwater table. Results suggest that the risk of groundwater contamination from benzene in a produced water spill was relatively low in the South Platte Aquifer. Spill size was the dominant factor influencing whether a contaminant reached the water table. Only statistically larger spills (volume per surface area ≥12.0 cm) posed a clear risk. Storm events following a spill were generally required to transport typical (median)-sized spills (0.38 cm volume per surface area) to the water table; typical spills only posed risk if a 500 or 100 year storm (followed by little degradation or sorption) occurred right after the spill. This methodology could be applied to evaluate spills occurring over other aquifers.
Surface spills occur frequently during unconventional oil and gas production operations and have the potential to impact groundwater quality. A screening-level analysis using contaminant fate and transport simulations was performed to: (1) evaluate whether hypothetical (yet realistic) spills of aqueous produced fluids pose risks to groundwater quality in the South Platte Aquifer, (2) identify the key hydrologic and transport factors that determine these risks, and (3) develop a screening-level methodology that could be applied for other sites and pollutants. This assessment considered a range of representative hydrologic conditions and transport behavior for benzene, a regulated pollutant in production fluids. Realistic spill volumes and areas were determined using publicly available data collected by Colorado’s regulatory agency. Risk of groundwater pollution was based on predicted benzene concentrations at the groundwater table. Results suggest that the risk of groundwater contamination from benzene in a produced water spill was relatively low in the South Platte Aquifer. Spill size was the dominant factor influencing whether a contaminant reached the water table. Only statistically larger spills (volume per surface area ≥12.0 cm) posed a clear risk. Storm events following a spill were generally required to transport typical (median)-sized spills (0.38 cm volume per surface area) to the water table; typical spills only posed risk if a 500 or 100 year storm (followed by little degradation or sorption) occurred right after the spill. This methodology could be applied to evaluate spills occurring over other aquifers.
Arsenic Release to the Environment from Hydrocarbon Production, Storage, Transportation, Use and Waste Management
Madeline E. Schreiber and Isabelle M. Cozzarelli, December 2020
Arsenic Release to the Environment from Hydrocarbon Production, Storage, Transportation, Use and Waste Management
Madeline E. Schreiber and Isabelle M. Cozzarelli (2020). Journal of Hazardous Materials, 125013. 10.1016/j.jhazmat.2020.125013
Abstract:
Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.
Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.
Effect of temperature on phenanthrene accumulation from hydraulic fracturing flowback and produced water in rainbow trout (Oncorhynchus mykiss)
Blewett et al., December 2020
Effect of temperature on phenanthrene accumulation from hydraulic fracturing flowback and produced water in rainbow trout (Oncorhynchus mykiss)
Tamzin A. Blewett, Aaron Boyd, Erik J. Folkerts, Katherine N. Snihur, Daniel S. Alessi, Greg Goss (2020). Environmental Pollution, 116411. 10.1016/j.envpol.2020.116411
Abstract:
Hydraulic fracturing has become widely used in recent years to access vast global unconventional sources of oil and gas. This process involves the injection of proprietary mixtures of water and chemicals to fracture shale formations and extract the hydrocarbons trapped within. These injection fluids, along with minerals, hydrocarbons, and saline waters present within the formations being drilled into, return to the surface as flowback and produced water (FPW). FPW is a highly complex mixture, containing metals, salts and clay, as well as many organic chemicals, including polycyclic aromatic hydrocarbons such as phenanthrene. The present study sought to determine the effects of temperature on the accumulation of phenanthrene in rainbow trout (Oncorhynchus mykiss). This model organism resides in rivers overlapping the Montney and Duvernay formations, both highly developed formations for hydraulic fracturing. Rainbow trout acclimated to temperatures of 4, 13 and 17°C were exposed to either 5% or 20% FPW, as well as saline mixtures representing the exact ionic content of FPW to determine the accumulation of radiolabelled 14C phenanthrene within the gill, gut, liver and gallbladder. FPW exposure reduced the overall accumulation of phenanthrene in a manner most often similar to high salinity exposure, indicating that the high ionic strength of FPW is the primary factor affecting accumulation. Accumulation was different at the temperature extremes (4 and 17°C), although no consistent relationship was observed between temperature and accumulation across the observed tissues. These results indicate that several physiological responses occur as a result of FPW exposure and water temperature change which dictate phenanthrene uptake, particularly in the gills. Temperature (and seasonality) alone cannot be used to model the potential accumulation of polycyclic aromatic hydrocarbons after FPW spills.
Hydraulic fracturing has become widely used in recent years to access vast global unconventional sources of oil and gas. This process involves the injection of proprietary mixtures of water and chemicals to fracture shale formations and extract the hydrocarbons trapped within. These injection fluids, along with minerals, hydrocarbons, and saline waters present within the formations being drilled into, return to the surface as flowback and produced water (FPW). FPW is a highly complex mixture, containing metals, salts and clay, as well as many organic chemicals, including polycyclic aromatic hydrocarbons such as phenanthrene. The present study sought to determine the effects of temperature on the accumulation of phenanthrene in rainbow trout (Oncorhynchus mykiss). This model organism resides in rivers overlapping the Montney and Duvernay formations, both highly developed formations for hydraulic fracturing. Rainbow trout acclimated to temperatures of 4, 13 and 17°C were exposed to either 5% or 20% FPW, as well as saline mixtures representing the exact ionic content of FPW to determine the accumulation of radiolabelled 14C phenanthrene within the gill, gut, liver and gallbladder. FPW exposure reduced the overall accumulation of phenanthrene in a manner most often similar to high salinity exposure, indicating that the high ionic strength of FPW is the primary factor affecting accumulation. Accumulation was different at the temperature extremes (4 and 17°C), although no consistent relationship was observed between temperature and accumulation across the observed tissues. These results indicate that several physiological responses occur as a result of FPW exposure and water temperature change which dictate phenanthrene uptake, particularly in the gills. Temperature (and seasonality) alone cannot be used to model the potential accumulation of polycyclic aromatic hydrocarbons after FPW spills.
Irrigation of Wheat with Select Hydraulic Fracturing Chemicals: Evaluating Plant Uptake and Growth Impacts
Shariq et al., December 2020
Irrigation of Wheat with Select Hydraulic Fracturing Chemicals: Evaluating Plant Uptake and Growth Impacts
Linsey Shariq, Molly C. McLaughlin, Rachelle A. Rehberg, Hannah Miller, Jens Blotevogel, Thomas Borch (2020). Environmental Pollution, 116402. 10.1016/j.envpol.2020.116402
Abstract:
Oilfield flowback and produced water (FPW) is a waste stream that may offer an alternative source of water for multiple beneficial uses. One practice gaining interest in several semi-arid states is the reuse of FPW for agricultural irrigation. However, it is unknown if the reuse of FPW on edible crops could increase health risks from ingestion of exposed food, or impact crop growth. A greenhouse experiment was conducted using wheat (Triticum aestivum) to investigate the uptake potential of select hydraulic fracturing additives known to be associated with health risks. The selected chemicals included acrylamide, didecyldimethylammonium chloride (DDAC), diethanolamine, and tetramethylammonium chloride (TMAC). Mature wheat grain was extracted and analyzed by liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) to quantify chemical uptake. Plant development observations were also documented to evaluate impacts of the chemicals on crop yield. Analytical results indicated that TMAC and diethanolamine had significantly higher uptake into both wheat grain and stems than control plants which were not exposed to the four chemicals under investigation. Acrylamide was measured in statistically higher concentrations in the stems only, while DDAC was not detected in grain or stems. Growth impacts included lodging in treated wheat plants due to increased stem height and grain weight, potentially resulting from increased nitrogen application. While analytical results show that uptake of select hydraulic fracturing chemicals in wheat grain and stems is measurable, reuse of FPW for irrigation in real world scenarios would likely result in less uptake because water would be subject to natural degradation, and often treatment and dilution practices. Nonetheless, based on the outstanding data gaps associated with this research topic, chemical specific treatment and regulatory safeguards are still recommended.
Oilfield flowback and produced water (FPW) is a waste stream that may offer an alternative source of water for multiple beneficial uses. One practice gaining interest in several semi-arid states is the reuse of FPW for agricultural irrigation. However, it is unknown if the reuse of FPW on edible crops could increase health risks from ingestion of exposed food, or impact crop growth. A greenhouse experiment was conducted using wheat (Triticum aestivum) to investigate the uptake potential of select hydraulic fracturing additives known to be associated with health risks. The selected chemicals included acrylamide, didecyldimethylammonium chloride (DDAC), diethanolamine, and tetramethylammonium chloride (TMAC). Mature wheat grain was extracted and analyzed by liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) to quantify chemical uptake. Plant development observations were also documented to evaluate impacts of the chemicals on crop yield. Analytical results indicated that TMAC and diethanolamine had significantly higher uptake into both wheat grain and stems than control plants which were not exposed to the four chemicals under investigation. Acrylamide was measured in statistically higher concentrations in the stems only, while DDAC was not detected in grain or stems. Growth impacts included lodging in treated wheat plants due to increased stem height and grain weight, potentially resulting from increased nitrogen application. While analytical results show that uptake of select hydraulic fracturing chemicals in wheat grain and stems is measurable, reuse of FPW for irrigation in real world scenarios would likely result in less uptake because water would be subject to natural degradation, and often treatment and dilution practices. Nonetheless, based on the outstanding data gaps associated with this research topic, chemical specific treatment and regulatory safeguards are still recommended.
Reaping Rewards, or Missing out? How Neoliberal Governance and State Growth Machines Condition the Impacts of Oil and Gas Development on Local Well-Being
Mayer et al., December 2020
Reaping Rewards, or Missing out? How Neoliberal Governance and State Growth Machines Condition the Impacts of Oil and Gas Development on Local Well-Being
Adam Mayer, Shawn Olson‐Hazboun, Stephanie Malin (2020). Sociological Inquiry, . https://doi.org/10.1111/soin.12405
Abstract:
For decades, the governance regimes of the United States and many other nations have increasingly devolved authority from central federal governments to substantially weaker state and local governments and even private industry. This trend produces uneven results for affected spaces and modes of governance. At the same time, industries have been re-regulated under neoliberalization to maximize corporate profitability. Conterminous to the trend of neoliberal deregulation is the global energy transition. The U.S. energy system has shifted away from coal toward natural gas and has become the world’s top producer of hydrocarbons due to the widespread deployment of drilling techniques that allow access to unconventional resources. We evaluate the ways that neoliberal governance structures can create uneven socio-economic impacts from oil and gas development across U.S. states using a multi-level modeling framework with random slopes and cross-level interactions. We utilize a multi-level state and county data set that covers 2000–2016 to examine different outcomes across scales and places. We find evidence that state political economies—reflected in the ideological composition of state legislatures as well as the political spending of the energy sector—condition the effects of oil and gas development on well-being. These findings are discussed in reference to theories of neoliberalism, growth machine politics, energy boomtowns, and natural resource-dependent communities.
For decades, the governance regimes of the United States and many other nations have increasingly devolved authority from central federal governments to substantially weaker state and local governments and even private industry. This trend produces uneven results for affected spaces and modes of governance. At the same time, industries have been re-regulated under neoliberalization to maximize corporate profitability. Conterminous to the trend of neoliberal deregulation is the global energy transition. The U.S. energy system has shifted away from coal toward natural gas and has become the world’s top producer of hydrocarbons due to the widespread deployment of drilling techniques that allow access to unconventional resources. We evaluate the ways that neoliberal governance structures can create uneven socio-economic impacts from oil and gas development across U.S. states using a multi-level modeling framework with random slopes and cross-level interactions. We utilize a multi-level state and county data set that covers 2000–2016 to examine different outcomes across scales and places. We find evidence that state political economies—reflected in the ideological composition of state legislatures as well as the political spending of the energy sector—condition the effects of oil and gas development on well-being. These findings are discussed in reference to theories of neoliberalism, growth machine politics, energy boomtowns, and natural resource-dependent communities.
Market Tremors: Shale Gas Exploration, Earthquakes, and their Impact on House Prices
Gibbons et al., December 2020
Market Tremors: Shale Gas Exploration, Earthquakes, and their Impact on House Prices
Stephen Gibbons, Stephan Heblich, Christopher Timmins (2020). Journal of Urban Economics, 103313. 10.1016/j.jue.2020.103313
Abstract:
Shale gas has grown to become a major new source of energy in countries around the globe. While its importance for energy supply is well recognized, there has also been public concern over potential risks from hydraulic fracturing (‘fracking’). Although commercial development has not yet taken place in the UK, licenses for drilling were issued in 2008, signalling potential future development. This paper examines whether public fears about fracking affect house prices in areas that have been licensed for shale gas exploration. Our estimates suggest differentiated effects. Licensing did not affect house prices but fracking the first well in 2011, which caused two minor earthquakes, did. We find a 3.9–4.7 percent house price decrease in the area where the earthquakes occurred. The earthquakes were too minor to have caused any damage but we find the effect on prices extends to a radius of about 25 km served by local newspapers. This evidence suggests that the earthquakes and newspaper coverage increased awareness of exploration activity and fear of the local consequences.
Shale gas has grown to become a major new source of energy in countries around the globe. While its importance for energy supply is well recognized, there has also been public concern over potential risks from hydraulic fracturing (‘fracking’). Although commercial development has not yet taken place in the UK, licenses for drilling were issued in 2008, signalling potential future development. This paper examines whether public fears about fracking affect house prices in areas that have been licensed for shale gas exploration. Our estimates suggest differentiated effects. Licensing did not affect house prices but fracking the first well in 2011, which caused two minor earthquakes, did. We find a 3.9–4.7 percent house price decrease in the area where the earthquakes occurred. The earthquakes were too minor to have caused any damage but we find the effect on prices extends to a radius of about 25 km served by local newspapers. This evidence suggests that the earthquakes and newspaper coverage increased awareness of exploration activity and fear of the local consequences.
Evaluating oil and gas contributions to ambient nonmethane hydrocarbon mixing ratios and ozone-related metrics in the Colorado Front Range
Lyu et al., December 2020
Evaluating oil and gas contributions to ambient nonmethane hydrocarbon mixing ratios and ozone-related metrics in the Colorado Front Range
Congmeng Lyu, Shannon L. Capps, Kent Kurashima, Daven K. Henze, Gordon Pierce, Amir Hakami, Shunliu Zhao, Jaroslav Resler, Gregory R. Carmichael, Adrian Sandu, Armistead G. Russell, Tianfeng Chai, Jana Milford (2020). Atmospheric Environment, 118113. 10.1016/j.atmosenv.2020.118113
Abstract:
Recently, oil and natural gas (O&NG) production activities in the Denver-Julesburg Basin have expanded rapidly. Associated nonmethane hydrocarbon (NMHC) emissions contribute to photochemical formation of ground-level ozone and include benzene as well as other hazardous air pollutants. Using positive matrix factorization (PMF) and chemical mass balance (CMB) methods, we estimate how much O&NG activities and other sources contribute to morning NMHC mixing ratios measured from 2013 to mid-2016 at a site in Platteville, CO, in the Denver-Julesburg Basin, and at a contrasting site in downtown Denver. A novel adjoint sensitivity analysis method is then used to estimate corresponding contributions to ozone and ozone-linked mortality in the Denver region. Average 6–9 am NMHC mixing ratios in Platteville were seven times higher than those in Denver in 2013 but four times higher in 2016. CMB estimates that O&NG activities contributed to the Platteville (Denver) site an average of 96% (56%) of NMHC on a carbon basis while PMF indicated 92% (33%). Average vehicle-related contributions of NMHC are estimated as 41% by CMB and 53% by PMF in Denver. Estimates of the fractional contribution to potential ozone and ozone-linked mortality from O&NG activities are smaller while those from vehicles are larger than the NMHC contributions. CMB (PMF) indicate that greater than 78% (40%) of annual average benzene in Denver is attributable to vehicle emissions while greater than 75% (67%) of benzene in Platteville is attributable to O&NG activities.
Recently, oil and natural gas (O&NG) production activities in the Denver-Julesburg Basin have expanded rapidly. Associated nonmethane hydrocarbon (NMHC) emissions contribute to photochemical formation of ground-level ozone and include benzene as well as other hazardous air pollutants. Using positive matrix factorization (PMF) and chemical mass balance (CMB) methods, we estimate how much O&NG activities and other sources contribute to morning NMHC mixing ratios measured from 2013 to mid-2016 at a site in Platteville, CO, in the Denver-Julesburg Basin, and at a contrasting site in downtown Denver. A novel adjoint sensitivity analysis method is then used to estimate corresponding contributions to ozone and ozone-linked mortality in the Denver region. Average 6–9 am NMHC mixing ratios in Platteville were seven times higher than those in Denver in 2013 but four times higher in 2016. CMB estimates that O&NG activities contributed to the Platteville (Denver) site an average of 96% (56%) of NMHC on a carbon basis while PMF indicated 92% (33%). Average vehicle-related contributions of NMHC are estimated as 41% by CMB and 53% by PMF in Denver. Estimates of the fractional contribution to potential ozone and ozone-linked mortality from O&NG activities are smaller while those from vehicles are larger than the NMHC contributions. CMB (PMF) indicate that greater than 78% (40%) of annual average benzene in Denver is attributable to vehicle emissions while greater than 75% (67%) of benzene in Platteville is attributable to O&NG activities.
Unconventional Natural Gas Development and Heart Failure
and , December 2020
Unconventional Natural Gas Development and Heart Failure
and (2020). Journal of the American College of Cardiology, 2875-2877. 10.1016/j.jacc.2020.10.040
Abstract:
Biological effects of inhaled hydraulic fracturing sand dust. I. Scope of the investigation
Jeffrey S. Fedan, December 2020
Biological effects of inhaled hydraulic fracturing sand dust. I. Scope of the investigation
Jeffrey S. Fedan (2020). Toxicology and Applied Pharmacology, 115329. 10.1016/j.taap.2020.115329
Abstract:
Hydraulic fracturing (“fracking”) is a process in which subterranean natural gas-laden rock is fractured under pressure to enhance retrieval of gas. Sand (a “proppant”) is present in the fracking fluid pumped down the well bore to stabilize the fissures and facilitate gas flow. The manipulation of sand at the well site creates respirable dust (fracking sand dust, FSD) to which workers are exposed. Because workplace exposures to FSD have exceeded exposure limits set by OSHA, a physico-chemical characterization of FSD along with comprehensive investigations of the potential early adverse effects of FSDs on organ function and biomarkers has been conducted using a rat model and related in vivo and in vitro experiments involving the respiratory, cardiovascular, immune systems, kidney and brain. An undercurrent theme of the overall hazard identification study was, to what degree do the health effects of inhaled FSD resemble those previously observed after crystalline silica dust inhalation? In short-term studies, FSD was found to be less bioactive than MIN-U-SIL® 5 in the lungs. A second theme was, are the biological effects of FSD restricted to the lungs? Bioactivity of FSD was observed in all examined organ systems. Our findings indicate that, in many respects, the physical and chemical properties, and the short-term biological effects, of the FSDs share many similarities as a group but have little in common with crystalline silica dust.
Hydraulic fracturing (“fracking”) is a process in which subterranean natural gas-laden rock is fractured under pressure to enhance retrieval of gas. Sand (a “proppant”) is present in the fracking fluid pumped down the well bore to stabilize the fissures and facilitate gas flow. The manipulation of sand at the well site creates respirable dust (fracking sand dust, FSD) to which workers are exposed. Because workplace exposures to FSD have exceeded exposure limits set by OSHA, a physico-chemical characterization of FSD along with comprehensive investigations of the potential early adverse effects of FSDs on organ function and biomarkers has been conducted using a rat model and related in vivo and in vitro experiments involving the respiratory, cardiovascular, immune systems, kidney and brain. An undercurrent theme of the overall hazard identification study was, to what degree do the health effects of inhaled FSD resemble those previously observed after crystalline silica dust inhalation? In short-term studies, FSD was found to be less bioactive than MIN-U-SIL® 5 in the lungs. A second theme was, are the biological effects of FSD restricted to the lungs? Bioactivity of FSD was observed in all examined organ systems. Our findings indicate that, in many respects, the physical and chemical properties, and the short-term biological effects, of the FSDs share many similarities as a group but have little in common with crystalline silica dust.
Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity
Kassotis et al., December 2020
Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity
Christopher D. Kassotis, Jennifer S. Harkness, Phuc H. Vo, Danh C. Vu, Kate Hoffman, Katelyn M. Cinnamon, Jennifer N. Cornelius-Green, Avner Vengosh, Chung-Ho Lin, Donald E. Tillitt, Robin L. Kruse, Jane A. McElroy, Susan C. Nagel (2020). Science of The Total Environment, 142236. 10.1016/j.scitotenv.2020.142236
Abstract:
The rise of hydraulic fracturing and unconventional oil and gas (UOG) exploration in the United States has increased public concerns for water contamination induced from hydraulic fracturing fluids and associated wastewater spills. Herein, we collected surface and groundwater samples across Garfield County, Colorado, a drilling-dense region, and measured endocrine bioactivities, geochemical tracers of UOG wastewater, UOG-related organic contaminants in surface water, and evaluated UOG drilling production (weighted well scores, nearby well count, reported spills) surrounding sites. Elevated antagonist activities for the estrogen, androgen, progesterone, and glucocorticoid receptors were detected in surface water and associated with nearby shale gas well counts and density. The elevated endocrine activities were observed in surface water associated with medium and high UOG production (weighted UOG well score-based groups). These bioactivities were generally not associated with reported spills nearby, and often did not exhibit geochemical profiles associated with UOG wastewater from this region. Our results suggest the potential for releases of low-saline hydraulic fracturing fluids or chemicals used in other aspects of UOG production, similar to the chemistry of the local water, and dissimilar from defined spills of post-injection wastewater. Notably, water collected from certain medium and high UOG production sites exhibited bioactivities well above the levels known to impact the health of aquatic organisms, suggesting that further research to assess potential endocrine activities of UOG operations is warranted.
The rise of hydraulic fracturing and unconventional oil and gas (UOG) exploration in the United States has increased public concerns for water contamination induced from hydraulic fracturing fluids and associated wastewater spills. Herein, we collected surface and groundwater samples across Garfield County, Colorado, a drilling-dense region, and measured endocrine bioactivities, geochemical tracers of UOG wastewater, UOG-related organic contaminants in surface water, and evaluated UOG drilling production (weighted well scores, nearby well count, reported spills) surrounding sites. Elevated antagonist activities for the estrogen, androgen, progesterone, and glucocorticoid receptors were detected in surface water and associated with nearby shale gas well counts and density. The elevated endocrine activities were observed in surface water associated with medium and high UOG production (weighted UOG well score-based groups). These bioactivities were generally not associated with reported spills nearby, and often did not exhibit geochemical profiles associated with UOG wastewater from this region. Our results suggest the potential for releases of low-saline hydraulic fracturing fluids or chemicals used in other aspects of UOG production, similar to the chemistry of the local water, and dissimilar from defined spills of post-injection wastewater. Notably, water collected from certain medium and high UOG production sites exhibited bioactivities well above the levels known to impact the health of aquatic organisms, suggesting that further research to assess potential endocrine activities of UOG operations is warranted.
Connecting Cognitive and Behavioral Characteristics of Policy Conflict in Oil and Gas Politics
Christopher M. Weible and Tanya Heikkila, December 2020
Connecting Cognitive and Behavioral Characteristics of Policy Conflict in Oil and Gas Politics
Christopher M. Weible and Tanya Heikkila (2020). International Review of Public Policy, . 10.4000/irpp.1312
Abstract:
The essence of policy conflicts remains largely underdeveloped, both theoretically and empirically. We explore policy conflict and explain its cognitive and behavioral characteristics using data from a survey administered to policy actors involved in oil and gas politics in Colorado, USA. The analysis begins with a description of the cognitive and behavioral characteristics of policy actors and then combines them into a single index to depict varying intensities of conflict. Cognitive characteristics are comprised of three dimensions: disagreement on public policy, perceived threats from opponents, and an unwillingness to compromise. Behavioral characteristics include engagement by policy actors in a range of activities, from mobilizing opponents to providing information to the media. Ordered Logit models are used to associate the attributes of policy actors with cognitive and behavioral characteristics and an index of conflict intensity that combines these two characteristics. The conclusion offers questions and recommendations for future research.
The essence of policy conflicts remains largely underdeveloped, both theoretically and empirically. We explore policy conflict and explain its cognitive and behavioral characteristics using data from a survey administered to policy actors involved in oil and gas politics in Colorado, USA. The analysis begins with a description of the cognitive and behavioral characteristics of policy actors and then combines them into a single index to depict varying intensities of conflict. Cognitive characteristics are comprised of three dimensions: disagreement on public policy, perceived threats from opponents, and an unwillingness to compromise. Behavioral characteristics include engagement by policy actors in a range of activities, from mobilizing opponents to providing information to the media. Ordered Logit models are used to associate the attributes of policy actors with cognitive and behavioral characteristics and an index of conflict intensity that combines these two characteristics. The conclusion offers questions and recommendations for future research.
Unconventional Natural Gas Development and Hospitalization for Heart Failure in Pennsylvania
McAlexander et al., December 2020
Unconventional Natural Gas Development and Hospitalization for Heart Failure in Pennsylvania
Tara P. McAlexander, Karen Bandeen-Roche, Jessie P. Buckley, Jonathan Pollak, Erin D. Michos, John William McEvoy, Brian S. Schwartz (2020). Journal of the American College of Cardiology, 2862-2874. 10.1016/j.jacc.2020.10.023
Abstract:
BACKGROUND: Growing literature linking unconventional natural gas development (UNGD) to adverse health has implicated air pollution and stress pathways. Persons with heart failure (HF) are susceptible to these stressors. OBJECTIVES: This study sought to evaluate associations between UNGD activity and hospitalization among HF patients, stratified by both ejection fraction (EF) status (reduced [HFrEF], preserved [HFpEF], not classifiable) and HF severity. METHODS: We evaluated the odds of hospitalization among patients with HF seen at Geisinger from 2008 to 2015 using electronic health records. We assigned metrics of UNGD activity by phase (pad preparation, drilling, stimulation, and production) 30 days before hospitalization or a frequency-matched control selection date. We assigned phenotype status using a validated algorithm. RESULTS: We identified 9,054 patients with HF with 5,839 hospitalizations (mean age 71.1 ± 12.7 years; 47.7% female). Comparing 4th to 1st quartiles, adjusted odds ratios (95% confidence interval) for hospitalization were 1.70 (1.35 to 2.13), 0.97 (0.75 to 1.27), 1.80 (1.35 to 2.40), and 1.62 (1.07 to 2.45) for pad preparation, drilling, stimulation, and production metrics, respectively. We did not find effect modification by HFrEF or HFpEF status. Associations of most UNGD metrics with hospitalization were stronger among those with more severe HF at baseline. CONCLUSIONS: Three of 4 phases of UNGD activity were associated with hospitalization for HF in a large sample of patients with HF in an area of active UNGD, with similar findings by HFrEF versus HFpEF status. Older patients with HF seem particularly vulnerable to adverse health impacts from UNGD activity.
BACKGROUND: Growing literature linking unconventional natural gas development (UNGD) to adverse health has implicated air pollution and stress pathways. Persons with heart failure (HF) are susceptible to these stressors. OBJECTIVES: This study sought to evaluate associations between UNGD activity and hospitalization among HF patients, stratified by both ejection fraction (EF) status (reduced [HFrEF], preserved [HFpEF], not classifiable) and HF severity. METHODS: We evaluated the odds of hospitalization among patients with HF seen at Geisinger from 2008 to 2015 using electronic health records. We assigned metrics of UNGD activity by phase (pad preparation, drilling, stimulation, and production) 30 days before hospitalization or a frequency-matched control selection date. We assigned phenotype status using a validated algorithm. RESULTS: We identified 9,054 patients with HF with 5,839 hospitalizations (mean age 71.1 ± 12.7 years; 47.7% female). Comparing 4th to 1st quartiles, adjusted odds ratios (95% confidence interval) for hospitalization were 1.70 (1.35 to 2.13), 0.97 (0.75 to 1.27), 1.80 (1.35 to 2.40), and 1.62 (1.07 to 2.45) for pad preparation, drilling, stimulation, and production metrics, respectively. We did not find effect modification by HFrEF or HFpEF status. Associations of most UNGD metrics with hospitalization were stronger among those with more severe HF at baseline. CONCLUSIONS: Three of 4 phases of UNGD activity were associated with hospitalization for HF in a large sample of patients with HF in an area of active UNGD, with similar findings by HFrEF versus HFpEF status. Older patients with HF seem particularly vulnerable to adverse health impacts from UNGD activity.
Understanding controls on the geochemistry of hydrocarbon produced waters from different basins across the US
Sharma et al., December 2020
Understanding controls on the geochemistry of hydrocarbon produced waters from different basins across the US
Shikha Sharma, Vikas Agrawal, Rawlings Akondi, Yifeng Wang, J. Alexandra Hakala (2020). Environmental Science: Processes & Impacts, . 10.1039/D0EM00388C
Abstract:
The most massive waste stream generated by conventional and unconventional hydrocarbon exploration is the produced water (PW). The costs and environmental issues associated with the management and disposal of PW, which contains high concentrations of inorganic and organic pollutants, is one of the most challenging problems faced by the oil and gas industry. Many of the current strategies for the reuse and recycling of PW are inefficient because of varying water demand and the spatial and temporal variations in the chemical composition of PW. The chemical composition of PW is controlled by a multitude of factors and can vary significantly over time. This study aims to understand different parameters and processes that control the quality of PW generated from hydrocarbon-bearing Formations by analyzing relationships between their major ion concentrations, O, H, and Sr isotopic composition. We selected PW data sets from three conventional (Trenton, Edwards, and Wilcox Formations) and four unconventional (Lance, Marcellus, Bakken, and Mesaverde Formations) oil and gas Formations with varying lithology and depositional environment. Using comparative geochemical data analysis, we determined that the geochemical signature of PW is controlled by a complex interplay of several factors, including the original source of water (connate marine vs. non-marine), migration of the basinal fluids, the nature and degree of water-mineral-hydrocarbon interactions, water recharge, and processes such as evaporation and ultrafiltration processes, and production techniques (conventional vs. unconventional). The design of efficient PW recycle and reuse strategies requires a holistic understanding of the geological and hydrological history of each Formation and an account of temporal and spatial heterogeneities.
The most massive waste stream generated by conventional and unconventional hydrocarbon exploration is the produced water (PW). The costs and environmental issues associated with the management and disposal of PW, which contains high concentrations of inorganic and organic pollutants, is one of the most challenging problems faced by the oil and gas industry. Many of the current strategies for the reuse and recycling of PW are inefficient because of varying water demand and the spatial and temporal variations in the chemical composition of PW. The chemical composition of PW is controlled by a multitude of factors and can vary significantly over time. This study aims to understand different parameters and processes that control the quality of PW generated from hydrocarbon-bearing Formations by analyzing relationships between their major ion concentrations, O, H, and Sr isotopic composition. We selected PW data sets from three conventional (Trenton, Edwards, and Wilcox Formations) and four unconventional (Lance, Marcellus, Bakken, and Mesaverde Formations) oil and gas Formations with varying lithology and depositional environment. Using comparative geochemical data analysis, we determined that the geochemical signature of PW is controlled by a complex interplay of several factors, including the original source of water (connate marine vs. non-marine), migration of the basinal fluids, the nature and degree of water-mineral-hydrocarbon interactions, water recharge, and processes such as evaporation and ultrafiltration processes, and production techniques (conventional vs. unconventional). The design of efficient PW recycle and reuse strategies requires a holistic understanding of the geological and hydrological history of each Formation and an account of temporal and spatial heterogeneities.
Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites
Zhou et al., December 2020
Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites
Xiaochi Zhou, Xiao Peng, Amir Montazeri, Laura E. McHale, Simon Gaßner, David R. Lyon, Azer P. Yalin, John D. Albertson (2020). Environmental Science & Technology, . 10.1021/acs.est.0c06545
Abstract:
In this study, a ground-based mobile measurement system was developed to provide rapid and cost-effective emission surveillance of both methane (CH4) and volatile organic compounds (VOCs) from oil and gas (O&G) production sites. After testing in several controlled release experiments, the system was deployed in a field campaign in the Eagle Ford basin, TX. We found fat-tail distributions for both methane and total VOC (C4–C12) emissions (e.g., the top 20% sites ranked according to methane and total VOC (C4–C12) emissions were responsible for ∼60 and ∼80% of total emissions, respectively) and a good correlation between them (Spearman’s R = 0.74). This result suggests that emission controls targeting relatively large emitters may help significantly reduce both methane and VOCs in oil and wet gas basins, such as the Eagle Ford. A strong correlation (Spearman’s R = 0.84) was found between total VOC (C4–C12) emissions estimated using SUMMA canisters and data reported from a local ambient air monitoring station. This finding suggests that this system has the potential for rapid emission surveillance targeting relatively large emitters, which can help achieve emission reductions for both greenhouse gas (GHG) and air toxics from O&G production well pads in a cost-effective way.
In this study, a ground-based mobile measurement system was developed to provide rapid and cost-effective emission surveillance of both methane (CH4) and volatile organic compounds (VOCs) from oil and gas (O&G) production sites. After testing in several controlled release experiments, the system was deployed in a field campaign in the Eagle Ford basin, TX. We found fat-tail distributions for both methane and total VOC (C4–C12) emissions (e.g., the top 20% sites ranked according to methane and total VOC (C4–C12) emissions were responsible for ∼60 and ∼80% of total emissions, respectively) and a good correlation between them (Spearman’s R = 0.74). This result suggests that emission controls targeting relatively large emitters may help significantly reduce both methane and VOCs in oil and wet gas basins, such as the Eagle Ford. A strong correlation (Spearman’s R = 0.84) was found between total VOC (C4–C12) emissions estimated using SUMMA canisters and data reported from a local ambient air monitoring station. This finding suggests that this system has the potential for rapid emission surveillance targeting relatively large emitters, which can help achieve emission reductions for both greenhouse gas (GHG) and air toxics from O&G production well pads in a cost-effective way.