The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2152 studies.
Last updated: April 16, 2021

Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Methane Emissions from Abandoned Oil and Gas Wells in Canada and the United States
Williams et al., January 2021
Methane Emissions from Abandoned Oil and Gas Wells in Canada and the United States
James P. Williams, Amara Regehr, Mary Kang (2021). Environmental Science & Technology, 563-570. 10.1021/acs.est.0c04265
Abstract:
Abandoned oil and gas wells are one of the most uncertain sources of methane emissions into the atmosphere. To reduce these uncertainties and improve emission estimates, we geospatially and statistically analyze 598 direct methane emission measurements from abandoned oil and gas wells and aggregate well counts from regional databases for the United States (U.S.) and Canada. We estimate the number of abandoned wells to be at least 4,000,000 wells for the U.S. and at least 370,000 for Canada. Methane emission factors range from 1.8 × 10–3 g/h to 48 g/h per well depending on the plugging status, well type, and region, with the overall average at 6.0 g/h. We find that annual methane emissions from abandoned wells are underestimated by 150% in Canada and by 20% in the U.S. Even with the inclusion of two to three times more measurement data than used in current inventory estimates, we find that abandoned wells remain the most uncertain methane source in the U.S. and become the most uncertain source in Canada. Understanding methane emissions from abandoned oil and gas wells can provide critical insights into broader environmental impacts of abandoned wells, which are rapidly growing in number around the world.
Abandoned oil and gas wells are one of the most uncertain sources of methane emissions into the atmosphere. To reduce these uncertainties and improve emission estimates, we geospatially and statistically analyze 598 direct methane emission measurements from abandoned oil and gas wells and aggregate well counts from regional databases for the United States (U.S.) and Canada. We estimate the number of abandoned wells to be at least 4,000,000 wells for the U.S. and at least 370,000 for Canada. Methane emission factors range from 1.8 × 10–3 g/h to 48 g/h per well depending on the plugging status, well type, and region, with the overall average at 6.0 g/h. We find that annual methane emissions from abandoned wells are underestimated by 150% in Canada and by 20% in the U.S. Even with the inclusion of two to three times more measurement data than used in current inventory estimates, we find that abandoned wells remain the most uncertain methane source in the U.S. and become the most uncertain source in Canada. Understanding methane emissions from abandoned oil and gas wells can provide critical insights into broader environmental impacts of abandoned wells, which are rapidly growing in number around the world.
Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites
Zhou et al., December 2020
Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites
Xiaochi Zhou, Xiao Peng, Amir Montazeri, Laura E. McHale, Simon Gaßner, David R. Lyon, Azer P. Yalin, John D. Albertson (2020). Environmental Science & Technology, . 10.1021/acs.est.0c06545
Abstract:
In this study, a ground-based mobile measurement system was developed to provide rapid and cost-effective emission surveillance of both methane (CH4) and volatile organic compounds (VOCs) from oil and gas (O&G) production sites. After testing in several controlled release experiments, the system was deployed in a field campaign in the Eagle Ford basin, TX. We found fat-tail distributions for both methane and total VOC (C4–C12) emissions (e.g., the top 20% sites ranked according to methane and total VOC (C4–C12) emissions were responsible for ∼60 and ∼80% of total emissions, respectively) and a good correlation between them (Spearman’s R = 0.74). This result suggests that emission controls targeting relatively large emitters may help significantly reduce both methane and VOCs in oil and wet gas basins, such as the Eagle Ford. A strong correlation (Spearman’s R = 0.84) was found between total VOC (C4–C12) emissions estimated using SUMMA canisters and data reported from a local ambient air monitoring station. This finding suggests that this system has the potential for rapid emission surveillance targeting relatively large emitters, which can help achieve emission reductions for both greenhouse gas (GHG) and air toxics from O&G production well pads in a cost-effective way.
In this study, a ground-based mobile measurement system was developed to provide rapid and cost-effective emission surveillance of both methane (CH4) and volatile organic compounds (VOCs) from oil and gas (O&G) production sites. After testing in several controlled release experiments, the system was deployed in a field campaign in the Eagle Ford basin, TX. We found fat-tail distributions for both methane and total VOC (C4–C12) emissions (e.g., the top 20% sites ranked according to methane and total VOC (C4–C12) emissions were responsible for ∼60 and ∼80% of total emissions, respectively) and a good correlation between them (Spearman’s R = 0.74). This result suggests that emission controls targeting relatively large emitters may help significantly reduce both methane and VOCs in oil and wet gas basins, such as the Eagle Ford. A strong correlation (Spearman’s R = 0.84) was found between total VOC (C4–C12) emissions estimated using SUMMA canisters and data reported from a local ambient air monitoring station. This finding suggests that this system has the potential for rapid emission surveillance targeting relatively large emitters, which can help achieve emission reductions for both greenhouse gas (GHG) and air toxics from O&G production well pads in a cost-effective way.
Air pollution risk associated with unconventional shale gas development
Nur H. Orak and Natalie J. Pekney, November 2020
Air pollution risk associated with unconventional shale gas development
Nur H. Orak and Natalie J. Pekney (2020). Carbon Management, 1-7. 10.1080/17583004.2020.1840873
Abstract:
This study explores the effect of different phases of unconventional shale gas well-pad development on ambient air quality and the relationship between ambient concentrations of air pollutants and operator activity. The U.S. Department of Energy’s National Energy Technology Laboratory operated a mobile air-monitoring laboratory on two shale well pad sites in Pennsylvania and six shale well pad sites in West Virginia. The purpose of this study is to integrate expert knowledge and collected ambient air monitoring data by developing a Bayesian network (BN) model. The monitoring period included well-pad site development; construction, including vertical and horizontal drilling; hydraulic fracturing; flowback; and production. The observed data includes meteorological data with high time resolution and air quality data (volatile organic compounds (VOCs), ozone, methane and carbon isotopes in methane, carbon dioxide (CO2) and carbon isotopes in CO2, coarse and fine particulate matter (PM10 and PM2.5), and organic and elemental carbon). The results provide useful information for evaluating the influence of on- and off-site pollutant sources and determining future research efforts for building the BN model. The overall results of the developed six scenarios show that the prediction power of the proposed model for the vertical drilling phase is 94%. The high concentration of methane increases the probability of fracturing phase as source; the low concentration of PM10 and O3 occurrence increases the same probability to 82%; the low concentration of ethane and CO2 increases the probability to 98%. This study shows how expert Bayesian models can improve our ability to predict future air pollution risk associated with unconventional shale gas development.
This study explores the effect of different phases of unconventional shale gas well-pad development on ambient air quality and the relationship between ambient concentrations of air pollutants and operator activity. The U.S. Department of Energy’s National Energy Technology Laboratory operated a mobile air-monitoring laboratory on two shale well pad sites in Pennsylvania and six shale well pad sites in West Virginia. The purpose of this study is to integrate expert knowledge and collected ambient air monitoring data by developing a Bayesian network (BN) model. The monitoring period included well-pad site development; construction, including vertical and horizontal drilling; hydraulic fracturing; flowback; and production. The observed data includes meteorological data with high time resolution and air quality data (volatile organic compounds (VOCs), ozone, methane and carbon isotopes in methane, carbon dioxide (CO2) and carbon isotopes in CO2, coarse and fine particulate matter (PM10 and PM2.5), and organic and elemental carbon). The results provide useful information for evaluating the influence of on- and off-site pollutant sources and determining future research efforts for building the BN model. The overall results of the developed six scenarios show that the prediction power of the proposed model for the vertical drilling phase is 94%. The high concentration of methane increases the probability of fracturing phase as source; the low concentration of PM10 and O3 occurrence increases the same probability to 82%; the low concentration of ethane and CO2 increases the probability to 98%. This study shows how expert Bayesian models can improve our ability to predict future air pollution risk associated with unconventional shale gas development.
Investigating large methane enhancements in the U.S. San Juan Basin
Pétron et al., November 2020
Investigating large methane enhancements in the U.S. San Juan Basin
Gabrielle Pétron, Benjamin Miller, Bruce Vaughn, Eryka Thorley, Jonathan Kofler, Ingrid Mielke-Maday, Owen Sherwood, Edward Dlugokencky, Bradley Hall, Stefan Schwietzke, Steven Conley, Jeff Peischl, Patricia Lang, Eric Moglia, Molly Crotwell, Andrew Crotwell, Colm Sweeney, Tim Newberger, Sonja Wolter, Duane Kitzis, Laura Bianco, Clark King, Timothy Coleman, Allen White, Michael Rhodes, Pieter Tans, Russell Schnell (2020). Elementa: Science of the Anthropocene, . 10.1525/elementa.038
Abstract:
In 2014, a satellite-based map of regional anomalies of atmospheric methane (CH4) column retrievals singled out the fossil fuel rich San Juan Basin (SJB) as the biggest CH4 regional anomaly (“hot spot”) in the United States. Over a 3-week period in April 2015, we conducted ground and airborne atmospheric measurements to investigate daily wind regimes and CH4 emissions in this region of SW Colorado and NW New Mexico. The SJB, similar to other topographical basins with local sources, experienced elevated surface air pollution under low wind and surface temperature inversion at night and early morning. Survey drives in the basin identified multiple CH4 and ethane (C2H6) sources with distinct C2H6-to-CH4 emission plume ratios for coal bed methane (CBM), natural gas, oil, and coal production operations. Air samples influenced by gas seepage from the Fruitland coal formation outcrop in La Plata County, CO, had enhanced CH4, with no C2-5 light alkane enhancements. In situ fast-response data from seven basin survey flights, all with westerly winds, were used to map and attribute the detected C2H6 and CH4 emission plumes. C2H6-to-CH4 plume enhancement correlation slopes increased from north to south, reflecting the composition of the natural gas and/or CBM extracted in different parts of the basin. Nearly 75% of the total detected CH4 and 85% of the total detected C2H6 hot spot were located in New Mexico. Emissions from CBM and natural gas operations contributed 66% to 75% of the CH4 hot spot. Emissions from oil operations in New Mexico contributed 5% to 6% of the CH4 hot spot and 8% to 14% of the C2H6 hot spot. Seepage from the Fruitland coal outcrop in Colorado contributed at most 8% of the total detected CH4, while gas venting from the San Juan underground coal mine contributed <2%.
In 2014, a satellite-based map of regional anomalies of atmospheric methane (CH4) column retrievals singled out the fossil fuel rich San Juan Basin (SJB) as the biggest CH4 regional anomaly (“hot spot”) in the United States. Over a 3-week period in April 2015, we conducted ground and airborne atmospheric measurements to investigate daily wind regimes and CH4 emissions in this region of SW Colorado and NW New Mexico. The SJB, similar to other topographical basins with local sources, experienced elevated surface air pollution under low wind and surface temperature inversion at night and early morning. Survey drives in the basin identified multiple CH4 and ethane (C2H6) sources with distinct C2H6-to-CH4 emission plume ratios for coal bed methane (CBM), natural gas, oil, and coal production operations. Air samples influenced by gas seepage from the Fruitland coal formation outcrop in La Plata County, CO, had enhanced CH4, with no C2-5 light alkane enhancements. In situ fast-response data from seven basin survey flights, all with westerly winds, were used to map and attribute the detected C2H6 and CH4 emission plumes. C2H6-to-CH4 plume enhancement correlation slopes increased from north to south, reflecting the composition of the natural gas and/or CBM extracted in different parts of the basin. Nearly 75% of the total detected CH4 and 85% of the total detected C2H6 hot spot were located in New Mexico. Emissions from CBM and natural gas operations contributed 66% to 75% of the CH4 hot spot. Emissions from oil operations in New Mexico contributed 5% to 6% of the CH4 hot spot and 8% to 14% of the C2H6 hot spot. Seepage from the Fruitland coal outcrop in Colorado contributed at most 8% of the total detected CH4, while gas venting from the San Juan underground coal mine contributed <2%.
Methane Emissions from Abandoned Oil and Gas Wells in California
Lebel et al., October 2020
Methane Emissions from Abandoned Oil and Gas Wells in California
Eric D. Lebel, Harmony S. Lu, Lisa Vielstädte, Mary Kang, Peter Banner, Marc L. Fischer, Robert B. Jackson (2020). Environmental Science & Technology, . 10.1021/acs.est.0c05279
Abstract:
California hosts ∼124,000 abandoned and plugged (AP) oil and gas wells, ∼38,000 idle wells, and ∼63,000 active wells, whose methane (CH4) emissions remain largely unquantified at levels below ∼2 kg CH4 h–1. We sampled 121 wells using two methods: a rapid mobile plume integration method (detection ∼0.5 g CH4 h–1) and a more sensitive static flux chamber (detection ∼1 × 10–6 g CH4 h–1). We measured small but detectable methane emissions from 34 of 97 AP wells (mean emission: 0.286 g CH4 h–1). In contrast, we found emissions from 11 of 17 idle wells—which are not currently producing (mean: 35.4 g CH4 h–1)—4 of 6 active wells (mean: 189.7 g CH4 h–1), and one unplugged well—an open casing with no infrastructure present (10.9 g CH4 h–1). Our results support previous findings that emissions from plugged wells are low but are more substantial from idle wells. In addition, our smaller sample of active wells suggests that their reported emissions are consistent with previous studies and deserve further attention. Due to limited access, we could not measure wells in most major active oil and gas fields in California; therefore, we recommend additional data collection from all types of wells but especially active and idle wells.
California hosts ∼124,000 abandoned and plugged (AP) oil and gas wells, ∼38,000 idle wells, and ∼63,000 active wells, whose methane (CH4) emissions remain largely unquantified at levels below ∼2 kg CH4 h–1. We sampled 121 wells using two methods: a rapid mobile plume integration method (detection ∼0.5 g CH4 h–1) and a more sensitive static flux chamber (detection ∼1 × 10–6 g CH4 h–1). We measured small but detectable methane emissions from 34 of 97 AP wells (mean emission: 0.286 g CH4 h–1). In contrast, we found emissions from 11 of 17 idle wells—which are not currently producing (mean: 35.4 g CH4 h–1)—4 of 6 active wells (mean: 189.7 g CH4 h–1), and one unplugged well—an open casing with no infrastructure present (10.9 g CH4 h–1). Our results support previous findings that emissions from plugged wells are low but are more substantial from idle wells. In addition, our smaller sample of active wells suggests that their reported emissions are consistent with previous studies and deserve further attention. Due to limited access, we could not measure wells in most major active oil and gas fields in California; therefore, we recommend additional data collection from all types of wells but especially active and idle wells.
New Mexico Permian Basin Measured Well Pad Methane Emissions Are a Factor of 5–9 Times Higher Than U.S. EPA Estimates
Robertson et al., October 2020
New Mexico Permian Basin Measured Well Pad Methane Emissions Are a Factor of 5–9 Times Higher Than U.S. EPA Estimates
Anna M. Robertson, Rachel Edie, Robert A. Field, David Lyon, Renee McVay, Mark Omara, Daniel Zavala-Araiza, Shane M. Murphy (2020). Environmental Science & Technology, . 10.1021/acs.est.0c02927
Abstract:
Methane emission fluxes were estimated for 71 oil and gas well pads in the western Permian Basin (Delaware Basin), using a mobile laboratory and an inverse Gaussian dispersion method (OTM 33A). Sites with emissions that were below detection limit (BDL) for OTM 33A were recorded and included in the sample. Average emission rate per site was estimated by bootstrapping and by maximum likelihood best log-normal fit. Sites had to be split into “complex” (sites with liquid storage tanks and/or compressors) and “simple” (sites with only wellheads/pump jacks/separators) categories to achieve acceptable log-normal fits. For complex sites, the log-normal fit depends heavily on the number of BDL sites included. As more BDL sites are included, the log-normal distribution fit to the data is falsely widened, overestimating the mean, highlighting the importance of correctly characterizing low end emissions when using log-normal fits. Basin-wide methane emission rates were estimated for the production sector of the New Mexico portion of the Permian and range from ∼520 000 tons per year, TPY (bootstrapping, 95% CI: 300 000–790 000) to ∼610 000 TPY (log-normal fit method, 95% CI: 330 000–1 000 000). These estimates are a factor of 5.5–9.0 times greater than EPA National Emission Inventory (NEI) estimates for the region.
Methane emission fluxes were estimated for 71 oil and gas well pads in the western Permian Basin (Delaware Basin), using a mobile laboratory and an inverse Gaussian dispersion method (OTM 33A). Sites with emissions that were below detection limit (BDL) for OTM 33A were recorded and included in the sample. Average emission rate per site was estimated by bootstrapping and by maximum likelihood best log-normal fit. Sites had to be split into “complex” (sites with liquid storage tanks and/or compressors) and “simple” (sites with only wellheads/pump jacks/separators) categories to achieve acceptable log-normal fits. For complex sites, the log-normal fit depends heavily on the number of BDL sites included. As more BDL sites are included, the log-normal distribution fit to the data is falsely widened, overestimating the mean, highlighting the importance of correctly characterizing low end emissions when using log-normal fits. Basin-wide methane emission rates were estimated for the production sector of the New Mexico portion of the Permian and range from ∼520 000 tons per year, TPY (bootstrapping, 95% CI: 300 000–790 000) to ∼610 000 TPY (log-normal fit method, 95% CI: 330 000–1 000 000). These estimates are a factor of 5.5–9.0 times greater than EPA National Emission Inventory (NEI) estimates for the region.
Variability observed over time in methane emissions from abandoned oil and gas wells
Riddick et al., September 2020
Variability observed over time in methane emissions from abandoned oil and gas wells
Stuart N. Riddick, Denise L. Mauzerall, Michael A. Celia, Mary Kang, Karl Bandilla (2020). International Journal of Greenhouse Gas Control, 103116. 10.1016/j.ijggc.2020.103116
Abstract:
Recent studies have reported methane (CH4) emissions from abandoned oil and gas wells across the United States and the United Kingdom. These emissions can reach hundreds of kg CH4 per year per well and are important to include in greenhouse gas emission inventories and mitigation strategies. Emission estimates are generally based on single, short-term measurements that assume constant emission rates over both short (hours) and longer (months/years) time periods. To investigate this assumption, we measure CH4 emissions from 18 abandoned oil and gas wells in the USA and the UK continuously over 24 h and then make repeat 24 -h measurements at a single site over 12 months. While the lack of historical records for these wells makes it impossible to determine the underlying leakage-pathways, we observed that CH4 emissions at all wells varied over 24 h (range 0.2-81,000 mg CH4 hr−1) with average emissions varying by a factor of 18 and ranging from factors of 1.1–142. We did not find a statistically significant relationship between the magnitude of emissions and variability or that variability is correlated with temperature, relative humidity or atmospheric pressure. The results presented here suggest high CH4 emission events tend to be short-lived, so short-term (< 1 h) sampling is likely to miss them. Our findings present the dynamic nature of CH4 emissions from abandoned oil and gas wells which should be considered when planning measurement methodologies and developing greenhouse gas inventories/mitigation strategies. Incorporation of these temporal dynamics could improve national greenhouse gas emissions inventories.
Recent studies have reported methane (CH4) emissions from abandoned oil and gas wells across the United States and the United Kingdom. These emissions can reach hundreds of kg CH4 per year per well and are important to include in greenhouse gas emission inventories and mitigation strategies. Emission estimates are generally based on single, short-term measurements that assume constant emission rates over both short (hours) and longer (months/years) time periods. To investigate this assumption, we measure CH4 emissions from 18 abandoned oil and gas wells in the USA and the UK continuously over 24 h and then make repeat 24 -h measurements at a single site over 12 months. While the lack of historical records for these wells makes it impossible to determine the underlying leakage-pathways, we observed that CH4 emissions at all wells varied over 24 h (range 0.2-81,000 mg CH4 hr−1) with average emissions varying by a factor of 18 and ranging from factors of 1.1–142. We did not find a statistically significant relationship between the magnitude of emissions and variability or that variability is correlated with temperature, relative humidity or atmospheric pressure. The results presented here suggest high CH4 emission events tend to be short-lived, so short-term (< 1 h) sampling is likely to miss them. Our findings present the dynamic nature of CH4 emissions from abandoned oil and gas wells which should be considered when planning measurement methodologies and developing greenhouse gas inventories/mitigation strategies. Incorporation of these temporal dynamics could improve national greenhouse gas emissions inventories.
Methane concentrations in streams reveal gas leak discharges in regions of oil, gas, and coal development
Woda et al., June 2020
Methane concentrations in streams reveal gas leak discharges in regions of oil, gas, and coal development
Josh Woda, Tao Wen, Jacob Lemon, Virginia Marcon, Charles M. Keeports, Fred Zelt, Luanne Y. Steffy, Susan L. Brantley (2020). Science of The Total Environment, 140105. 10.1016/j.scitotenv.2020.140105
Abstract:
As natural gas has grown in importance as a global energy source, leakage of methane (CH4) from wells has been noted. Leakage of this greenhouse gas is important because it affects groundwater quality and, when emitted to the atmosphere, climate. We hypothesized that streams might be most contaminated by CH4 in the northern Appalachian Basin in regions with the longest history of hydrocarbon extraction activities. To test this, we searched for CH4-contaminated streams basin. Methane concentrations ([CH4]) for 529 stream sites are reported, in New York, West Virginia and mostly Pennsylvania. Despite targeting contaminated areas, the median [CH4], 1.1 μg/L, was lower than a recently identified threshold indicating potential contamination, 4.0 μg/L. [CH4] values were higher in a few streams because they receive high-[CH4] groundwaters, often from upwelling seeps. By analogy to the more commonly observed type of groundwater seep known as abandoned mine drainage (AMD), we introduce the term, “gas leak discharge” (GLD) for these waters where they are not associated with coal mines. GLD and AMD, observed in all parts of the study area, are both CH4-rich. Surprisingly, the region of oldest and most productive oil/gas development did not show the highest median for stream [CH4]. Instead, the median was statistically highest where dense coal mining was accompanied by conventional and unconventional oil and gas development, emphasizing the importance of CH4 contamination from coal mines into streams.
As natural gas has grown in importance as a global energy source, leakage of methane (CH4) from wells has been noted. Leakage of this greenhouse gas is important because it affects groundwater quality and, when emitted to the atmosphere, climate. We hypothesized that streams might be most contaminated by CH4 in the northern Appalachian Basin in regions with the longest history of hydrocarbon extraction activities. To test this, we searched for CH4-contaminated streams basin. Methane concentrations ([CH4]) for 529 stream sites are reported, in New York, West Virginia and mostly Pennsylvania. Despite targeting contaminated areas, the median [CH4], 1.1 μg/L, was lower than a recently identified threshold indicating potential contamination, 4.0 μg/L. [CH4] values were higher in a few streams because they receive high-[CH4] groundwaters, often from upwelling seeps. By analogy to the more commonly observed type of groundwater seep known as abandoned mine drainage (AMD), we introduce the term, “gas leak discharge” (GLD) for these waters where they are not associated with coal mines. GLD and AMD, observed in all parts of the study area, are both CH4-rich. Surprisingly, the region of oldest and most productive oil/gas development did not show the highest median for stream [CH4]. Instead, the median was statistically highest where dense coal mining was accompanied by conventional and unconventional oil and gas development, emphasizing the importance of CH4 contamination from coal mines into streams.
Reported methane emissions from active oil and gas wells in Pennsylvania, 2014-2018
ingraffea et al., April 2020
Reported methane emissions from active oil and gas wells in Pennsylvania, 2014-2018
anthony ingraffea, Paul A. Wawrzynek, Renee Santoro, Martin Timothy Wells (2020). Environmental Science & Technology, . 10.1021/acs.est.0c00863
Abstract:
Oil/gas well integrity failures are a common but poorly constrained source of methane emissions to the atmosphere. As of 2014, Pennsylvania requires gas and oil well operators to report gas losses, both fugitive and process, from all active and unplugged abandoned gas and oil wells. We analyze 589,175 operator reports and find that lower-bound reported annual methane emissions averaged 22.1 Gg (-16.9, +19.5) between 2014 and 2018 from 62,483 wells, an average of only 47% of the statewide well inventory for those years. Extrapolating to the 2019 oil and gas well inventory yields well average emissions of 55.6 Gg CH4. These emissions are not currently included in the state’s oil and gas emissions inventory. We also assess compliance in reporting among operators and note anomalies in reporting and apparent workarounds to reduce reported emissions. Suggestions for improving the accuracy and reliability in reporting and reducing emissions are offered.
Oil/gas well integrity failures are a common but poorly constrained source of methane emissions to the atmosphere. As of 2014, Pennsylvania requires gas and oil well operators to report gas losses, both fugitive and process, from all active and unplugged abandoned gas and oil wells. We analyze 589,175 operator reports and find that lower-bound reported annual methane emissions averaged 22.1 Gg (-16.9, +19.5) between 2014 and 2018 from 62,483 wells, an average of only 47% of the statewide well inventory for those years. Extrapolating to the 2019 oil and gas well inventory yields well average emissions of 55.6 Gg CH4. These emissions are not currently included in the state’s oil and gas emissions inventory. We also assess compliance in reporting among operators and note anomalies in reporting and apparent workarounds to reduce reported emissions. Suggestions for improving the accuracy and reliability in reporting and reducing emissions are offered.
Quantifying CH4 concentration spikes above baseline and attributing CH4 sources to hydraulic fracturing activities by continuous monitoring at an off-site tower
Russell et al., March 2020
Quantifying CH4 concentration spikes above baseline and attributing CH4 sources to hydraulic fracturing activities by continuous monitoring at an off-site tower
Sarah J. Russell, Chante’ D. Vines, Gil Bohrer, Derek R. Johnson, Jorge A. Villa, Robert Heltzel, Camilo Rey-Sanchez, Jaclyn H. Matthes (2020). Atmospheric Environment, 117452. 10.1016/j.atmosenv.2020.117452
Abstract:
Hydraulic fracturing (hydrofracking) for natural gas has increased rapidly in the area of the Marcellus Shale in the last thirty years but estimates of CH4 emissions from hydrofracking operations are still uncertain. Previous studies on CH4 emissions at hydrofracking operations have used bottom-up approaches collected at discrete timepoints or discrete aerial surveys covering a wide spatial area, constraining the temporal scale of inference regarding these emissions. This project monitored atmospheric CH4 concentrations and stable carbon isotopes at a half-hourly temporal resolution from a 20-m tower downwind of a hydrofracking well pad in West Virginia for eighteen months. We collected four months of baseline observations prior to onsite well development to construct an empirical artificial neural-network model of baseline CH4 concentrations. We compared the CH4 concentrations against the ANN-modeled CH4 baseline to identify CH4 concentration spikes that coincided with different stages of onsite well development, from the baseline period through fracking. CH4 concentration spikes were significantly more frequent than baseline conditions during the vertical drilling and fracking phases of operations. We found that the median magnitude of CH4 concentration spikes during the vertical drilling phase was 316% larger than that of the baseline phase, and the median magnitude of CH4 concentration spikes was 509% larger in the hydraulic stimulation (fracking) stage compared to the baseline phase. We also partitioned the sources of measured CH4 concentrations to biogenic ruminant and geologic shale gas isotopic signatures by measuring 13CH4 gas at high temporal resolution and using a source-partitioning 13CH4 model. The measured median value of half-hourly CH4 concentration spikes attributed to a geologic shale gas isotopic origin was 27% larger than the median CH4 concentration spikes attributed to ruminants, and the maximum half-hourly CH4 concentration spike attributed to shale gas was up to 179% higher than maximum CH4 concentration spike for ruminant-dominated half-hours. This study developed a framework for off-site, single tower measurements to identify CH4 concentration spikes associated with the phases of unconventional natural gas well development in a complex CH4 emissions airshed.
Hydraulic fracturing (hydrofracking) for natural gas has increased rapidly in the area of the Marcellus Shale in the last thirty years but estimates of CH4 emissions from hydrofracking operations are still uncertain. Previous studies on CH4 emissions at hydrofracking operations have used bottom-up approaches collected at discrete timepoints or discrete aerial surveys covering a wide spatial area, constraining the temporal scale of inference regarding these emissions. This project monitored atmospheric CH4 concentrations and stable carbon isotopes at a half-hourly temporal resolution from a 20-m tower downwind of a hydrofracking well pad in West Virginia for eighteen months. We collected four months of baseline observations prior to onsite well development to construct an empirical artificial neural-network model of baseline CH4 concentrations. We compared the CH4 concentrations against the ANN-modeled CH4 baseline to identify CH4 concentration spikes that coincided with different stages of onsite well development, from the baseline period through fracking. CH4 concentration spikes were significantly more frequent than baseline conditions during the vertical drilling and fracking phases of operations. We found that the median magnitude of CH4 concentration spikes during the vertical drilling phase was 316% larger than that of the baseline phase, and the median magnitude of CH4 concentration spikes was 509% larger in the hydraulic stimulation (fracking) stage compared to the baseline phase. We also partitioned the sources of measured CH4 concentrations to biogenic ruminant and geologic shale gas isotopic signatures by measuring 13CH4 gas at high temporal resolution and using a source-partitioning 13CH4 model. The measured median value of half-hourly CH4 concentration spikes attributed to a geologic shale gas isotopic origin was 27% larger than the median CH4 concentration spikes attributed to ruminants, and the maximum half-hourly CH4 concentration spike attributed to shale gas was up to 179% higher than maximum CH4 concentration spike for ruminant-dominated half-hours. This study developed a framework for off-site, single tower measurements to identify CH4 concentration spikes associated with the phases of unconventional natural gas well development in a complex CH4 emissions airshed.
Unmanned aerial vehicle observations of cold venting from exploratory hydraulic fracturing in the United Kingdom
Shah et al., February 2020
Unmanned aerial vehicle observations of cold venting from exploratory hydraulic fracturing in the United Kingdom
Adil Shah, Hugo Ricketts, Joseph R Pitt, Jacob T Shaw, Khristopher Kabbabe, J Brian Leen, Grant Allen (2020). Environmental Research Communications, 021003. 10.1088/2515-7620/ab716d
Abstract:
Preindustrial 14 CH 4 indicates greater anthropogenic fossil CH 4 emissions
Hmiel et al., February 2020
Preindustrial 14 CH 4 indicates greater anthropogenic fossil CH 4 emissions
Benjamin Hmiel, V. V. Petrenko, M. N. Dyonisius, C. Buizert, A. M. Smith, P. F. Place, C. Harth, R. Beaudette, Q. Hua, B. Yang, I. Vimont, S. E. Michel, J. P. Severinghaus, D. Etheridge, T. Bromley, J. Schmitt, X. Faïn, R. F. Weiss, E. Dlugokencky (2020). Nature, 409-412. 10.1038/s41586-020-1991-8
Abstract:
Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.
Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.
Cumulative environmental and employment impacts of the shale gas boom
Mayfield et al., November 2019
Cumulative environmental and employment impacts of the shale gas boom
Erin N. Mayfield, Jared L. Cohon, Nicholas Z. Muller, Inês M. L. Azevedo, Allen L. Robinson (2019). Nature Sustainability, 1-10. 10.1038/s41893-019-0420-1
Abstract:
During the 2004–16 shale-gas development in the Appalachian basin, United States, premature mortality from lower air quality and employment followed a boom-and-bust cycle, whereas climate impacts will persist for generations beyond the activity.
During the 2004–16 shale-gas development in the Appalachian basin, United States, premature mortality from lower air quality and employment followed a boom-and-bust cycle, whereas climate impacts will persist for generations beyond the activity.
A baseline of atmospheric greenhouse gases for prospective UK shale gas sites
Shaw et al., September 2019
A baseline of atmospheric greenhouse gases for prospective UK shale gas sites
Jacob T. Shaw, Grant Allen, Joseph Pitt, Mohammed I. Mead, Ruth M. Purvis, Rachel Dunmore, Shona Wilde, Adil Shah, Patrick Barker, Prudence Bateson, Asan Bacak, Alastair C. Lewis, David Lowry, Rebecca Fisher, Mathias Lanoisellé, Robert S. Ward (2019). Science of The Total Environment, 1-13. 10.1016/j.scitotenv.2019.05.266
Abstract:
We report a 24-month statistical baseline climatology for continuously-measured atmospheric carbon dioxide (CO2) and methane (CH4) mixing ratios linked to surface meteorology as part of a wider environmental baselining project tasked with understanding pre-existing local environmental conditions prior to shale gas exploration in the United Kingdom. The baseline was designed to statistically characterise high-precision measurements of atmospheric composition gathered over two full years (between February 1st 2016 and January 31st 2018) at fixed ground-based measurement stations on, or near to, two UK sites being developed for shale gas exploration involving hydraulic fracturing. The sites, near Blackpool (Lancashire) and Kirby Misperton (North Yorkshire), were the first sites approved in the UK for shale gas exploration since a moratorium was lifted in England. The sites are operated by Cuadrilla Resources Ltd. and Third Energy Ltd., respectively. A statistical climatology of greenhouse gas mixing ratios linked to prevailing local surface meteorology is presented. This study diagnoses and interprets diurnal, day-of-week, and seasonal trends in measured mixing ratios and the contributory role of local, regional and long-range emission sources. The baseline provides a set of contextual statistical quantities against which the incremental impacts of new activities (in this case, future shale gas exploration) can be quantitatively assessed. The dataset may also serve to inform the design of future case studies, as well as direct baseline monitoring design at other potential shale gas and industrial sites. In addition, it provides a quantitative reference for future analyses of the impact, and efficacy, of specific policy interventions or mitigating practices. For example, statistically significant excursions in measured concentrations from this baseline (e.g. >99th percentile) observed during phases of operational extraction may be used to trigger further examination in order to diagnose the source(s) of emission and links to on-site activities at the time, which may be of importance to regulators, site operators and public health stakeholders. A guideline algorithm for identifying these statistically significant excursions, or “baseline deviation events”, from the expected baseline conditions is presented and tested. Gaussian plume modelling is used to further these analyses, by simulating approximate upper-limits of CH4 fluxes which could be expected to give observable enhancements at the monitoring stations under defined meteorological conditions.
We report a 24-month statistical baseline climatology for continuously-measured atmospheric carbon dioxide (CO2) and methane (CH4) mixing ratios linked to surface meteorology as part of a wider environmental baselining project tasked with understanding pre-existing local environmental conditions prior to shale gas exploration in the United Kingdom. The baseline was designed to statistically characterise high-precision measurements of atmospheric composition gathered over two full years (between February 1st 2016 and January 31st 2018) at fixed ground-based measurement stations on, or near to, two UK sites being developed for shale gas exploration involving hydraulic fracturing. The sites, near Blackpool (Lancashire) and Kirby Misperton (North Yorkshire), were the first sites approved in the UK for shale gas exploration since a moratorium was lifted in England. The sites are operated by Cuadrilla Resources Ltd. and Third Energy Ltd., respectively. A statistical climatology of greenhouse gas mixing ratios linked to prevailing local surface meteorology is presented. This study diagnoses and interprets diurnal, day-of-week, and seasonal trends in measured mixing ratios and the contributory role of local, regional and long-range emission sources. The baseline provides a set of contextual statistical quantities against which the incremental impacts of new activities (in this case, future shale gas exploration) can be quantitatively assessed. The dataset may also serve to inform the design of future case studies, as well as direct baseline monitoring design at other potential shale gas and industrial sites. In addition, it provides a quantitative reference for future analyses of the impact, and efficacy, of specific policy interventions or mitigating practices. For example, statistically significant excursions in measured concentrations from this baseline (e.g. >99th percentile) observed during phases of operational extraction may be used to trigger further examination in order to diagnose the source(s) of emission and links to on-site activities at the time, which may be of importance to regulators, site operators and public health stakeholders. A guideline algorithm for identifying these statistically significant excursions, or “baseline deviation events”, from the expected baseline conditions is presented and tested. Gaussian plume modelling is used to further these analyses, by simulating approximate upper-limits of CH4 fluxes which could be expected to give observable enhancements at the monitoring stations under defined meteorological conditions.
Reducing methane emissions from abandoned oil and gas wells: Strategies and costs
Kang et al., September 2019
Reducing methane emissions from abandoned oil and gas wells: Strategies and costs
Mary Kang, Denise L. Mauzerall, Daniel Z. Ma, Michael A. Celia (2019). Energy Policy, 594-601. 10.1016/j.enpol.2019.05.045
Abstract:
Well plugging, the main strategy for reducing methane emissions from millions of unplugged abandoned oil and gas (AOG) wells in the U.S. and abroad, is expensive and many wells remain unplugged. In addition, plugging does not necessarily reduce methane emissions and some categories of plugged wells are high emitters. We analyze strategies and costs of five options for reducing methane emissions from high-emitting AOG wells - those which are unplugged and plugged/vented gas wells. The five options are: plugging without gas venting, plugging with gas venting and flaring, plugging with gas venting and usage, gas flaring only, and gas capture/usage only. Average plugging costs ($37,000 per well) can be justified by the social cost of methane, which considers air quality, climate, and human/ecosystem impacts. Savings as measured by natural gas prices and alternative energy credits can offset low plugging costs (<$15,400 per well) but are not large enough to offset average plugging costs. Nonetheless, reducing methane emissions from AOG wells is a cost-effective strategy for addressing climate change that has comparable costs to some current greenhouse gas mitigation options and can produce co-benefits such as groundwater protection. Therefore, we recommend including the mitigation of AOG wells in climate and energy policies in the U.S., Canada, and other oil-and-gas-producing regions.
Well plugging, the main strategy for reducing methane emissions from millions of unplugged abandoned oil and gas (AOG) wells in the U.S. and abroad, is expensive and many wells remain unplugged. In addition, plugging does not necessarily reduce methane emissions and some categories of plugged wells are high emitters. We analyze strategies and costs of five options for reducing methane emissions from high-emitting AOG wells - those which are unplugged and plugged/vented gas wells. The five options are: plugging without gas venting, plugging with gas venting and flaring, plugging with gas venting and usage, gas flaring only, and gas capture/usage only. Average plugging costs ($37,000 per well) can be justified by the social cost of methane, which considers air quality, climate, and human/ecosystem impacts. Savings as measured by natural gas prices and alternative energy credits can offset low plugging costs (<$15,400 per well) but are not large enough to offset average plugging costs. Nonetheless, reducing methane emissions from AOG wells is a cost-effective strategy for addressing climate change that has comparable costs to some current greenhouse gas mitigation options and can produce co-benefits such as groundwater protection. Therefore, we recommend including the mitigation of AOG wells in climate and energy policies in the U.S., Canada, and other oil-and-gas-producing regions.
Flaring in two Texas shale areas: Comparison of bottom-up with top-down volume estimates for 2012 to 2015
Katherine Ann Willyard and Gunnar W. Schade, July 2019
Flaring in two Texas shale areas: Comparison of bottom-up with top-down volume estimates for 2012 to 2015
Katherine Ann Willyard and Gunnar W. Schade (2019). Science of The Total Environment, . 10.1016/j.scitotenv.2019.06.465
Abstract:
Since advances in horizontal drilling and hydraulic fracturing technologies have opened oil and gas development in previously unreachable areas, air pollution emissions have increased from the burning (i.e., flaring) or releasing (i.e., venting) of natural gas at oil and gas extraction sites. While venting and flaring is a growing concern, accounting of how much gas is vented and flared, and where this occurs, remains limited. The purpose of this paper is to describe two methods for estimating venting and flaring volumes - self-reports required by state law and satellite imagery radiant heat measurements - and to compare these methods using the case of Texas Eagle Ford and Permian Basin venting and flaring practices from 2012 to 2015. First, we used data self-reported by companies to the Texas Railroad Commission (TxRRC), and National Oceanic and Atmospheric Administration (NOAA) data captured by satellite-based Visible Infrared Imaging Radiometer Suite sensors, to estimate the annual total volumes of gas vented and flared in the Eagle Ford and Permian Basin from 2012 to 2015. Next, we developed a method using a geographic information system to link and compare TxRRC and NOAA county-based and point-based volume estimates. Finally, we conducted case studies of two oil and gas fields to better understand how TxRRC and NOAA venting and flaring volumes differ. We find both TxRRC and NOAA estimated venting and/or flaring volumes steadily increased from 2012 to 2015. Additionally, TxRRC reports captured about half the volumes estimated by NOAA. This suggests that self-reported volumes significantly underestimate the volume of gas being vented or flared. However, this research is limited by the data currently available. As such, future research and policy should further develop methods to systemically capture the extent to which oil and gas extraction facilities vent and flare natural gas.
Since advances in horizontal drilling and hydraulic fracturing technologies have opened oil and gas development in previously unreachable areas, air pollution emissions have increased from the burning (i.e., flaring) or releasing (i.e., venting) of natural gas at oil and gas extraction sites. While venting and flaring is a growing concern, accounting of how much gas is vented and flared, and where this occurs, remains limited. The purpose of this paper is to describe two methods for estimating venting and flaring volumes - self-reports required by state law and satellite imagery radiant heat measurements - and to compare these methods using the case of Texas Eagle Ford and Permian Basin venting and flaring practices from 2012 to 2015. First, we used data self-reported by companies to the Texas Railroad Commission (TxRRC), and National Oceanic and Atmospheric Administration (NOAA) data captured by satellite-based Visible Infrared Imaging Radiometer Suite sensors, to estimate the annual total volumes of gas vented and flared in the Eagle Ford and Permian Basin from 2012 to 2015. Next, we developed a method using a geographic information system to link and compare TxRRC and NOAA county-based and point-based volume estimates. Finally, we conducted case studies of two oil and gas fields to better understand how TxRRC and NOAA venting and flaring volumes differ. We find both TxRRC and NOAA estimated venting and/or flaring volumes steadily increased from 2012 to 2015. Additionally, TxRRC reports captured about half the volumes estimated by NOAA. This suggests that self-reported volumes significantly underestimate the volume of gas being vented or flared. However, this research is limited by the data currently available. As such, future research and policy should further develop methods to systemically capture the extent to which oil and gas extraction facilities vent and flare natural gas.
Assessing the impact of future greenhouse gas emissions from natural gas production
Crow et al., June 2019
Assessing the impact of future greenhouse gas emissions from natural gas production
Daniel J. G. Crow, Paul Balcombe, Nigel Brandon, Adam D. Hawkes (2019). Science of The Total Environment, 1242-1258. 10.1016/j.scitotenv.2019.03.048
Abstract:
Greenhouse gases (GHGs) produced by the extraction of natural gas are an important contributor to lifecycle emissions and account for a significant fraction of anthropogenic methane emissions in the USA. The timing as well as the magnitude of these emissions matters, as the short term climate warming impact of methane is up to 120 times that of CO2. This study uses estimates of CO2 and methane emissions associated with different upstream operations to build a deterministic model of GHG emissions from conventional and unconventional gas fields as a function of time. By combining these emissions with a dynamic, techno-economic model of gas supply we assess their potential impact on the value of different types of project and identify stranded resources in various carbon price scenarios. We focus in particular on the effects of different emission metrics for methane, using the global warming potential (GWP) and the global temperature potential (GTP), with both fixed 20-year and 100-year CO2-equivalent values and in a time-dependent way based on a target year for climate stabilisation. We report a strong time dependence of emissions over the lifecycle of a typical field, and find that bringing forward the stabilisation year dramatically increases the importance of the methane contribution to these emissions. Using a commercial database of the remaining reserves of individual projects, we use our model to quantify future emissions resulting from the extraction of current US non-associated reserves. A carbon price of at least 400 USD/tonne CO2 is effective in reducing cumulative GHGs by 30–60%, indicating that decarbonising the upstream component of the natural gas supply chain is achievable using carbon prices similar to those needed to decarbonise the energy system as a whole. Surprisingly, for large carbon prices, the choice of emission metric does not have a significant impact on cumulative emissions.
Greenhouse gases (GHGs) produced by the extraction of natural gas are an important contributor to lifecycle emissions and account for a significant fraction of anthropogenic methane emissions in the USA. The timing as well as the magnitude of these emissions matters, as the short term climate warming impact of methane is up to 120 times that of CO2. This study uses estimates of CO2 and methane emissions associated with different upstream operations to build a deterministic model of GHG emissions from conventional and unconventional gas fields as a function of time. By combining these emissions with a dynamic, techno-economic model of gas supply we assess their potential impact on the value of different types of project and identify stranded resources in various carbon price scenarios. We focus in particular on the effects of different emission metrics for methane, using the global warming potential (GWP) and the global temperature potential (GTP), with both fixed 20-year and 100-year CO2-equivalent values and in a time-dependent way based on a target year for climate stabilisation. We report a strong time dependence of emissions over the lifecycle of a typical field, and find that bringing forward the stabilisation year dramatically increases the importance of the methane contribution to these emissions. Using a commercial database of the remaining reserves of individual projects, we use our model to quantify future emissions resulting from the extraction of current US non-associated reserves. A carbon price of at least 400 USD/tonne CO2 is effective in reducing cumulative GHGs by 30–60%, indicating that decarbonising the upstream component of the natural gas supply chain is achievable using carbon prices similar to those needed to decarbonise the energy system as a whole. Surprisingly, for large carbon prices, the choice of emission metric does not have a significant impact on cumulative emissions.
Emission scenarios of a potential shale gas industry in Germany and the United Kingdom
Cremonese et al., May 2019
Emission scenarios of a potential shale gas industry in Germany and the United Kingdom
Lorenzo Cremonese, Lindsey B. Weger, Hugo Denier van der Gon, Marianne Pascale Bartels, Tim Butler (2019). Elem Sci Anth, 18. 10.1525/elementa.359
Abstract:
Article: Emission scenarios of a potential shale gas industry in Germany and the United Kingdom
Article: Emission scenarios of a potential shale gas industry in Germany and the United Kingdom
Assessment of the Bacharach Hi Flow® Sampler Characteristics and Potential Failure Modes when Measuring Methane Emissions
Connolly et al., May 2019
Assessment of the Bacharach Hi Flow® Sampler Characteristics and Potential Failure Modes when Measuring Methane Emissions
J. I. Connolly, R. A. Robinson, T. D. Gardiner (2019). Measurement, . 10.1016/j.measurement.2019.05.055
Abstract:
The Bacharach Hi Flow® Sampler (BHFS) has been widely used to monitor methane leaks from industrial sources, however results have been challenged due to possible instrument performance issues. This study focused on improving the understanding of the BHFS performance by investigating its characteristics and potential failure modes. BHFS operation was split into three modes: catalytic oxidation (CO), thermal conductivity (TC) and a transition region. Good linear performance was observed in CO and TC modes (R2 > 0.992), however, the calibration factor changed between experiments highlighting the importance of regular calibration. Measurements in the middle region were dominated by noise with poor linearity. Instrument failure due to high non-methane hydrocarbons occurred sometimes; a hypothesis to explain this has been established. We found the BHFS to be a suitable instrument for measuring methane emissions if operated correctly and with knowledge of its limitations. Some key operational guidelines are provided in the conclusions.
The Bacharach Hi Flow® Sampler (BHFS) has been widely used to monitor methane leaks from industrial sources, however results have been challenged due to possible instrument performance issues. This study focused on improving the understanding of the BHFS performance by investigating its characteristics and potential failure modes. BHFS operation was split into three modes: catalytic oxidation (CO), thermal conductivity (TC) and a transition region. Good linear performance was observed in CO and TC modes (R2 > 0.992), however, the calibration factor changed between experiments highlighting the importance of regular calibration. Measurements in the middle region were dominated by noise with poor linearity. Instrument failure due to high non-methane hydrocarbons occurred sometimes; a hypothesis to explain this has been established. We found the BHFS to be a suitable instrument for measuring methane emissions if operated correctly and with knowledge of its limitations. Some key operational guidelines are provided in the conclusions.
Importance of Superemitter Natural Gas Well Pads in the Marcellus Shale
Caulton et al., May 2019
Importance of Superemitter Natural Gas Well Pads in the Marcellus Shale
Dana R. Caulton, Jessica M. Lu, Haley M. Lane, Bernhard Buchholz, Jeffrey P. Fitts, Levi M. Golston, Xuehui Guo, Qi Li, James McSpiritt, Da Pan, Lars Wendt, Elie Bou-Zeid, Mark A. Zondlo (2019). Environmental Science & Technology, 4747-4754. 10.1021/acs.est.8b06965
Abstract:
A large-scale study of methane emissions from well pads was conducted in the Marcellus shale (Pennsylvania), the largest producing natural gas shale play in the United States, to better identify the prevalence and characteristics of superemitters. Roughly 2100 measurements were taken from 673 unique unconventional well pads corresponding to ∼18% of the total population of active sites and ∼32% of the total statewide unconventional natural gas production. A log-normal distribution with a geometric mean of 2.0 kg h–1 and arithmetic mean of 5.5 kg h–1 was observed, which agrees with other independent observations in this region. The geometric standard deviation (4.4 kg h–1) compared well to other studies in the region, but the top 10% of emitters observed in this study contributed 77% of the total emissions, indicating an extremely skewed distribution. The integrated proportional loss of this representative sample was equal to 0.53% with a 95% confidence interval of 0.45–0.64% of the total production of the sites, which is greater than the U.S. Environmental Protection Agency inventory estimate (0.29%), but in the lower range of other mobile observations (0.09–3.3%). These results emphasize the need for a sufficiently large sample size when characterizing emissions distributions that contain superemitters.
A large-scale study of methane emissions from well pads was conducted in the Marcellus shale (Pennsylvania), the largest producing natural gas shale play in the United States, to better identify the prevalence and characteristics of superemitters. Roughly 2100 measurements were taken from 673 unique unconventional well pads corresponding to ∼18% of the total population of active sites and ∼32% of the total statewide unconventional natural gas production. A log-normal distribution with a geometric mean of 2.0 kg h–1 and arithmetic mean of 5.5 kg h–1 was observed, which agrees with other independent observations in this region. The geometric standard deviation (4.4 kg h–1) compared well to other studies in the region, but the top 10% of emitters observed in this study contributed 77% of the total emissions, indicating an extremely skewed distribution. The integrated proportional loss of this representative sample was equal to 0.53% with a 95% confidence interval of 0.45–0.64% of the total production of the sites, which is greater than the U.S. Environmental Protection Agency inventory estimate (0.29%), but in the lower range of other mobile observations (0.09–3.3%). These results emphasize the need for a sufficiently large sample size when characterizing emissions distributions that contain superemitters.
Long-Term Measurements Show Little Evidence for Large Increases in Total U.S. Methane Emissions over the Past Decade
Lan et al., April 2021
Long-Term Measurements Show Little Evidence for Large Increases in Total U.S. Methane Emissions over the Past Decade
Xin Lan, Pieter Tans, Colm Sweeney, Arlyn Andrews, Edward Dlugokencky, Stefan Schwietzke, Jonathan Kofler, Kathryn McKain, Kirk Thoning, Molly Crotwell, Stephen Montzka, Benjamin R. Miller, Sébastien C. Biraud (2021). Geophysical Research Letters, . 10.1029/2018GL081731
Abstract:
Recent studies show conflicting estimates of trends in methane (CH4) emissions from oil and natural gas (ONG) operations in the U.S. We analyze atmospheric CH4 measurements from 20 North American sites in the NOAA Global Greenhouse Gas Reference Network and determined trends for 2006-2015. Using CH4 vertical gradients as an indicator of regional surface emissions, we find no significant increase in emissions at most sites and modest increases at three sites heavily influenced by ONG activities. Our estimated increases in North American ONG CH4 emissions (on average 3.4 ± 1.4 % yr-1 for 2006-2015, ±σ) are much smaller than estimates from some previous studies and below our detection threshold for total emissions increases at the east coast sites that are sensitive to U.S. outflows. We also find an increasing trend in ethane/methane emission ratios which has resulted in major overestimation of oil and gas emissions trends in some previous studies.
Recent studies show conflicting estimates of trends in methane (CH4) emissions from oil and natural gas (ONG) operations in the U.S. We analyze atmospheric CH4 measurements from 20 North American sites in the NOAA Global Greenhouse Gas Reference Network and determined trends for 2006-2015. Using CH4 vertical gradients as an indicator of regional surface emissions, we find no significant increase in emissions at most sites and modest increases at three sites heavily influenced by ONG activities. Our estimated increases in North American ONG CH4 emissions (on average 3.4 ± 1.4 % yr-1 for 2006-2015, ±σ) are much smaller than estimates from some previous studies and below our detection threshold for total emissions increases at the east coast sites that are sensitive to U.S. outflows. We also find an increasing trend in ethane/methane emission ratios which has resulted in major overestimation of oil and gas emissions trends in some previous studies.
Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada
Baillie et al., April 2021
Methane emissions from conventional and unconventional oil and gas production sites in southeastern Saskatchewan, Canada
Jennifer Baillie, David Risk, Emmaline Atherton, Elizabeth O'Connell, Chelsea Fougere, Evelise Bourlon, Katlyn MacKay (2021). Environmental Research Communications, . 10.1029/2018GL081731
Abstract:
Life Cycle Assessment of a shale gas exploration and exploitation project in the province of Burgos, Spain
Costa et al., December 2018
Life Cycle Assessment of a shale gas exploration and exploitation project in the province of Burgos, Spain
D. Costa, B. Neto, A. S. Danko, A. Fiúza (2018). Science of The Total Environment, 130-145. 10.1016/j.scitotenv.2018.07.085
Abstract:
Natural gas (NG) from shale formations (or shale gas) is an unconventional energy resource whose potential environmental impacts are still not adequately assessed. Hence, this study performs a Life Cycle Assessment (LCA) of shale gas considering a gas well under appraisal in Burgos, Spain. An attributional model was developed, considering the NG pre-production and production phases in the system boundaries, considering 1 MJ of processed NG as a functional unit. Results were obtained through the CML-IA baseline method (developed by the Center of Environmental Science of Leiden University) and showed that well design, drilling and casing, hydraulic fracturing, NG production, gathering, and processing are critical processes. To better address the environmental impacts, a comparison with similar studies was carried out, as well as a sensitivity and an uncertainty analysis using Monte Carlo simulation (MCS). The model was found to be particularly sensitive to water usage in hydraulic fracturing and to the number of workovers with hydraulic fracturing. Limited data availability for shale gas exploration still poses a challenge for an accurate LCA. Even though shale gas remains controversial, it still can be considered as a strategic energy resource, requiring a precautionary approach when considering its exploitation and exploration.
Natural gas (NG) from shale formations (or shale gas) is an unconventional energy resource whose potential environmental impacts are still not adequately assessed. Hence, this study performs a Life Cycle Assessment (LCA) of shale gas considering a gas well under appraisal in Burgos, Spain. An attributional model was developed, considering the NG pre-production and production phases in the system boundaries, considering 1 MJ of processed NG as a functional unit. Results were obtained through the CML-IA baseline method (developed by the Center of Environmental Science of Leiden University) and showed that well design, drilling and casing, hydraulic fracturing, NG production, gathering, and processing are critical processes. To better address the environmental impacts, a comparison with similar studies was carried out, as well as a sensitivity and an uncertainty analysis using Monte Carlo simulation (MCS). The model was found to be particularly sensitive to water usage in hydraulic fracturing and to the number of workovers with hydraulic fracturing. Limited data availability for shale gas exploration still poses a challenge for an accurate LCA. Even though shale gas remains controversial, it still can be considered as a strategic energy resource, requiring a precautionary approach when considering its exploitation and exploration.
Ethylene Supply in a Fluid Context: Implications of Shale Gas and Climate Change
Gillian Foster, November 2018
Ethylene Supply in a Fluid Context: Implications of Shale Gas and Climate Change
Gillian Foster (2018). Energies, 2967. 10.3390/en11112967
Abstract:
The recent advent of shale gas in the U.S. has redefined the economics of ethylene manufacturing globally, causing a shift towards low-cost U.S. production due to natural gas feedstock, while reinforcing the industry’s reliance on fossil fuels. At the same time, the global climate change crisis compels a transition to a low-carbon economy. These two influencing factors are complex, contested, and uncertain. This paper projects the United States’ (U.S.) future ethylene supply in the context of two megatrends: the natural gas surge and global climate change. The analysis models the future U.S. supply of ethylene in 2050 based on plausible socio-economic scenarios in response to climate change mitigation and adaptation pathways as well as a range of natural gas feedstock prices. This Vector Error Correction Model explores the relationships between these variables. The results show that ethylene supply increased in nearly all modeled scenarios. A combination of lower population growth, lower consumption, and higher natural gas prices reduced ethylene supply by 2050. In most cases, forecasted CO2 emissions from ethylene production rose. This is the first study to project future ethylene supply to go beyond the price of feedstocks and include socio-economic variables relevant to climate change mitigation and adaptation.
The recent advent of shale gas in the U.S. has redefined the economics of ethylene manufacturing globally, causing a shift towards low-cost U.S. production due to natural gas feedstock, while reinforcing the industry’s reliance on fossil fuels. At the same time, the global climate change crisis compels a transition to a low-carbon economy. These two influencing factors are complex, contested, and uncertain. This paper projects the United States’ (U.S.) future ethylene supply in the context of two megatrends: the natural gas surge and global climate change. The analysis models the future U.S. supply of ethylene in 2050 based on plausible socio-economic scenarios in response to climate change mitigation and adaptation pathways as well as a range of natural gas feedstock prices. This Vector Error Correction Model explores the relationships between these variables. The results show that ethylene supply increased in nearly all modeled scenarios. A combination of lower population growth, lower consumption, and higher natural gas prices reduced ethylene supply by 2050. In most cases, forecasted CO2 emissions from ethylene production rose. This is the first study to project future ethylene supply to go beyond the price of feedstocks and include socio-economic variables relevant to climate change mitigation and adaptation.
Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region
Vaughn et al., October 2018
Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region
Timothy L. Vaughn, Clay S. Bell, Cody K. Pickering, Stefan Schwietzke, Garvin A. Heath, Gabrielle Pétron, Daniel J. Zimmerle, Russell C. Schnell, Dag Nummedal (2018). Proceedings of the National Academy of Sciences, 201805687. 10.1073/pnas.1805687115
Abstract:
This study spatially and temporally aligns top-down and bottom-up methane emission estimates for a natural gas production basin, using multiscale emission measurements and detailed activity data reporting. We show that episodic venting from manual liquid unloadings, which occur at a small fraction of natural gas well pads, drives a factor-of-two temporal variation in the basin-scale emission rate of a US dry shale gas play. The midafternoon peak emission rate aligns with the sampling time of all regional aircraft emission studies, which target well-mixed boundary layer conditions present in the afternoon. A mechanistic understanding of emission estimates derived from various methods is critical for unbiased emission verification and effective greenhouse gas emission mitigation. Our results demonstrate that direct comparison of emission estimates from methods covering widely different timescales can be misleading.
This study spatially and temporally aligns top-down and bottom-up methane emission estimates for a natural gas production basin, using multiscale emission measurements and detailed activity data reporting. We show that episodic venting from manual liquid unloadings, which occur at a small fraction of natural gas well pads, drives a factor-of-two temporal variation in the basin-scale emission rate of a US dry shale gas play. The midafternoon peak emission rate aligns with the sampling time of all regional aircraft emission studies, which target well-mixed boundary layer conditions present in the afternoon. A mechanistic understanding of emission estimates derived from various methods is critical for unbiased emission verification and effective greenhouse gas emission mitigation. Our results demonstrate that direct comparison of emission estimates from methods covering widely different timescales can be misleading.
Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia
Williams et al., October 2018
Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia
Philip J. Williams, Matthew Reeder, Natalie J. Pekney, David Risk, John Osborne, Michael McCawley (2018). Science of The Total Environment, 406-416. 10.1016/j.scitotenv.2018.04.422
Abstract:
The Marcellus Shale Energy and Environment Laboratory (MSEEL) in West Virginia provides a unique opportunity in the field of unconventional energy research. By studying near-surface atmospheric chemistry over several phases of a hydraulic fracturing event, the project will help evaluate the impact of current practices, as well as new techniques and mitigation technologies. A total of 10 mobile surveys covering a distance of approximately 1500 km were conducted through Morgantown. Our surveying technique involved using a vehicle-mounted Los Gatos Research gas analyzer to provide geo-located measurements of methane (CH4) and carbon dioxide (CO2). The ratios of super-ambient concentrations of CO2 and CH4 were used to separate well-pad emissions from the natural background concentrations over the various stages of well-pad development, as well as for comparisons to other urban sources of CH4. We found that regional background methane concentrations were elevated in all surveys, with a mean concentration of 2.699 ± 0.006 ppmv, which simply reflected the complexity of this riverine urban location. Emissions at the site were the greatest during the flow-back phase, with an estimated CH4 volume output of 20.62 ± 7.07 g/s, which was significantly higher than other identified urban emitters. Our study was able to successfully identify and quantify MSEEL emissions within this complex urban environment.
The Marcellus Shale Energy and Environment Laboratory (MSEEL) in West Virginia provides a unique opportunity in the field of unconventional energy research. By studying near-surface atmospheric chemistry over several phases of a hydraulic fracturing event, the project will help evaluate the impact of current practices, as well as new techniques and mitigation technologies. A total of 10 mobile surveys covering a distance of approximately 1500 km were conducted through Morgantown. Our surveying technique involved using a vehicle-mounted Los Gatos Research gas analyzer to provide geo-located measurements of methane (CH4) and carbon dioxide (CO2). The ratios of super-ambient concentrations of CO2 and CH4 were used to separate well-pad emissions from the natural background concentrations over the various stages of well-pad development, as well as for comparisons to other urban sources of CH4. We found that regional background methane concentrations were elevated in all surveys, with a mean concentration of 2.699 ± 0.006 ppmv, which simply reflected the complexity of this riverine urban location. Emissions at the site were the greatest during the flow-back phase, with an estimated CH4 volume output of 20.62 ± 7.07 g/s, which was significantly higher than other identified urban emitters. Our study was able to successfully identify and quantify MSEEL emissions within this complex urban environment.
Methane emissions from natural gas production sites in the United States: Data synthesis and national estimate
Omara et al., September 2018
Methane emissions from natural gas production sites in the United States: Data synthesis and national estimate
Mark Omara, Naomi Zimmerman, Melissa R. Sullivan, Xiang Li, Aja Ellis, Rebecca Cesa, R Subramanian, Albert A Presto, Allen L. Robinson (2018). Environmental Science & Technology, . 10.1021/acs.est.8b03535
Abstract:
We used site-level methane (CH4) emissions data from over 1,000 natural gas (NG) production sites in eight basins, including 92 new site-level CH4 measurements in the Uinta, northeastern Marcellus, and Denver-Julesburg basins, to investigate CH4 emissions characteristics and develop a new national CH4 emission estimate for the NG production sector. The distribution of site-level emissions is highly skewed, with the top 5% of sites accounting for 50% of cumulative emissions. High emitting sites are predominantly also high producing (>10 Mcfd). However, low NG production sites emit a comparably larger fraction of their CH4 production. When combined with activity data, we predict that this creates substantial variability in the basin-level CH4 emissions which, as a fraction of basin-level CH4 production, range from 0.90% for the Appalachian and Greater Green River to > 4.5% in the San Juan and San Joaquin. This suggests that much of the basin-level differences in production-normalized emissions reported by aircraft studies can be explained by differences in site size and distribution of site-level production rates. We estimate that NG production sites emit total CH4 emissions of 830 Mg/h (95% CI: 530—1,200), 63% of which come from the sites producing <100 Mcfd that account for only 10% of total NG production. Our total CH4 emissions estimate is 2.3 times higher than the U.S. EPA’s estimate and likely attributable to the disproportionate influence of high emitting sites.
We used site-level methane (CH4) emissions data from over 1,000 natural gas (NG) production sites in eight basins, including 92 new site-level CH4 measurements in the Uinta, northeastern Marcellus, and Denver-Julesburg basins, to investigate CH4 emissions characteristics and develop a new national CH4 emission estimate for the NG production sector. The distribution of site-level emissions is highly skewed, with the top 5% of sites accounting for 50% of cumulative emissions. High emitting sites are predominantly also high producing (>10 Mcfd). However, low NG production sites emit a comparably larger fraction of their CH4 production. When combined with activity data, we predict that this creates substantial variability in the basin-level CH4 emissions which, as a fraction of basin-level CH4 production, range from 0.90% for the Appalachian and Greater Green River to > 4.5% in the San Juan and San Joaquin. This suggests that much of the basin-level differences in production-normalized emissions reported by aircraft studies can be explained by differences in site size and distribution of site-level production rates. We estimate that NG production sites emit total CH4 emissions of 830 Mg/h (95% CI: 530—1,200), 63% of which come from the sites producing <100 Mcfd that account for only 10% of total NG production. Our total CH4 emissions estimate is 2.3 times higher than the U.S. EPA’s estimate and likely attributable to the disproportionate influence of high emitting sites.
Life cycle greenhouse gas emissions and freshwater consumption of liquefied Marcellus shale gas used for international power generation
Mallapragada et al., September 2018
Life cycle greenhouse gas emissions and freshwater consumption of liquefied Marcellus shale gas used for international power generation
Dharik S. Mallapragada, Eric Reyes-Bastida, Frank Roberto, Erin M. McElroy, Dejan Veskovic, Ian J. Laurenzi (2018). Journal of Cleaner Production, . 10.1016/j.jclepro.2018.09.111
Abstract:
The recent growth in U.S. natural gas reserves has led to interest in exporting liquefied natural gas (LNG) to countries in Asia, Europe and Latin America. Here, we estimate the life cycle greenhouse gas (GHG) emissions and life cycle freshwater consumption associated with exporting Marcellus shale gas as LNG for power generation in different import markets. The well-to-wire analysis relies on operations data for gas production, processing, transmission, and regasification, while also accounting for the latest measurements of fugitive CH4 emissions from U.S. natural gas activities. To estimate GHG emissions from a typical U.S. liquefaction facility, we use a bottom-up process model that can evaluate the impact of gas composition, technology choices for gas treatment and on-site power generation on overall facility GHG emissions. For LNG exports to Mumbai, India for power generation in a combined cycle power plant with 50% efficiency, the base case life cycle GHG emissions, freshwater consumption, and CH4 emissions as fraction of gross gas production are estimated to be 473 kg CO2eq/MWh (80% confidence interval: 452–503 kg CO2eq/MWh), 243 gal/MWh (80% CI: 200–300 gal/MWh) and 1.2% (80% CI: 0.81–1.79%), respectively. Among all destinations considered, typical life cycle GHG emissions range from 459 kg CO2eq/MWh to 473 kg CO2eq/MWh, with GHG emissions from liquefaction, shipping and regasification contributing 7–10% of life cycle GHG emissions.
The recent growth in U.S. natural gas reserves has led to interest in exporting liquefied natural gas (LNG) to countries in Asia, Europe and Latin America. Here, we estimate the life cycle greenhouse gas (GHG) emissions and life cycle freshwater consumption associated with exporting Marcellus shale gas as LNG for power generation in different import markets. The well-to-wire analysis relies on operations data for gas production, processing, transmission, and regasification, while also accounting for the latest measurements of fugitive CH4 emissions from U.S. natural gas activities. To estimate GHG emissions from a typical U.S. liquefaction facility, we use a bottom-up process model that can evaluate the impact of gas composition, technology choices for gas treatment and on-site power generation on overall facility GHG emissions. For LNG exports to Mumbai, India for power generation in a combined cycle power plant with 50% efficiency, the base case life cycle GHG emissions, freshwater consumption, and CH4 emissions as fraction of gross gas production are estimated to be 473 kg CO2eq/MWh (80% confidence interval: 452–503 kg CO2eq/MWh), 243 gal/MWh (80% CI: 200–300 gal/MWh) and 1.2% (80% CI: 0.81–1.79%), respectively. Among all destinations considered, typical life cycle GHG emissions range from 459 kg CO2eq/MWh to 473 kg CO2eq/MWh, with GHG emissions from liquefaction, shipping and regasification contributing 7–10% of life cycle GHG emissions.
Evaluating methods to estimate methane emissions from oil and gas production facilities using LES simulations
Saide et al., August 2018
Evaluating methods to estimate methane emissions from oil and gas production facilities using LES simulations
Pablo E Saide, Daniel Steinhoff, Branko Kosovic, Jeffrey Weil, Nicole Downey, Doug Blewitt, Steven Hanna, Luca Delle Monache (2018). Environmental Science & Technology, . 10.1021/acs.est.8b01767
Abstract:
. Large-eddy simulations (LES) coupled to a model that simulates methane emissions from oil and gas production facilities are used to generate realistic distributions of meteorological variables and methane concentrations. These are sampled to obtain simulated observations used to develop and evaluate source term estimation (STE) methods. A widely used EPA STE method (OTM33A) is found to provide emission estimates with little bias when averaged over six time-periods and seven well-pads. Sixty-four percent of the emissions estimated with OTM33A are within +/-30% of the simulated emissions, showing slightly larger spread than the 72% found previously using controlled release experiments. A newly developed method adopts the OTM33A sampling strategy and uses a variational or a stochastic STE approach coupled to an LES to obtain a better fit to the sampled meteorological conditions and to account for multiple sources within the well-pad. This method can considerably reduce the spread of the emissions estimates compared to OTM33A (92-95% within +/-30% percent error), but it is associated to a substantial increase in computational cost due to the LES. It thus provides an alternative when the additional costs can be afforded to obtain more precise emission estimates.
. Large-eddy simulations (LES) coupled to a model that simulates methane emissions from oil and gas production facilities are used to generate realistic distributions of meteorological variables and methane concentrations. These are sampled to obtain simulated observations used to develop and evaluate source term estimation (STE) methods. A widely used EPA STE method (OTM33A) is found to provide emission estimates with little bias when averaged over six time-periods and seven well-pads. Sixty-four percent of the emissions estimated with OTM33A are within +/-30% of the simulated emissions, showing slightly larger spread than the 72% found previously using controlled release experiments. A newly developed method adopts the OTM33A sampling strategy and uses a variational or a stochastic STE approach coupled to an LES to obtain a better fit to the sampled meteorological conditions and to account for multiple sources within the well-pad. This method can considerably reduce the spread of the emissions estimates compared to OTM33A (92-95% within +/-30% percent error), but it is associated to a substantial increase in computational cost due to the LES. It thus provides an alternative when the additional costs can be afforded to obtain more precise emission estimates.
Assessment of CO2 emission reduction potentials in the Chinese oil and gas extraction industry: From a technical and cost-effective perspective
Sun et al., August 2018
Assessment of CO2 emission reduction potentials in the Chinese oil and gas extraction industry: From a technical and cost-effective perspective
De-Qiang Sun, Bo-Wen Yi, Jin-Hua Xu, Wen-Zhi Zhao, Guo-Sheng Zhang, Yu-Feng Lu (2018). Journal of Cleaner Production, . 10.1016/j.jclepro.2018.08.044
Abstract:
The oil and gas extraction industry is an energy-intensive and high CO2 emission sector in China. This study estimates the cost-effective CO2 emission reduction potentials until 2050 by classifying key low-carbon technology bundles and investigating the energy efficiency, market penetration rate, and emission reduction cost of each technology bundle. A bottom-up technical evaluation model is established to give a comprehensive perspective to the Chinese oil and gas extraction industry and policymakers about the emission reduction potential and its associated cost. Results show that the carbon emission reduction potential in the Chinese oil and gas extraction industry in 2050 can reach 16.71 million tons in the case of all low-carbon technologies available and that the decrease rate can be as high as 14.3%. The contributions of emission reductions are mainly the improvement of energy efficiency, the transformation of production process, and the utilization of new energy sources. Most low-carbon technologies are cost-effective, with an average annual cost savings of 71.43 billion RMB. Nonetheless, the diffusions of low-carbon technologies are still significantly affected by energy price volatility and firms' expectations of future investment risk.
The oil and gas extraction industry is an energy-intensive and high CO2 emission sector in China. This study estimates the cost-effective CO2 emission reduction potentials until 2050 by classifying key low-carbon technology bundles and investigating the energy efficiency, market penetration rate, and emission reduction cost of each technology bundle. A bottom-up technical evaluation model is established to give a comprehensive perspective to the Chinese oil and gas extraction industry and policymakers about the emission reduction potential and its associated cost. Results show that the carbon emission reduction potential in the Chinese oil and gas extraction industry in 2050 can reach 16.71 million tons in the case of all low-carbon technologies available and that the decrease rate can be as high as 14.3%. The contributions of emission reductions are mainly the improvement of energy efficiency, the transformation of production process, and the utilization of new energy sources. Most low-carbon technologies are cost-effective, with an average annual cost savings of 71.43 billion RMB. Nonetheless, the diffusions of low-carbon technologies are still significantly affected by energy price volatility and firms' expectations of future investment risk.
Hack fracking for more methane
Michael A. Funk, July 2018
Hack fracking for more methane
Michael A. Funk (2018). Science, 241-241. 10.1126/science.361.6399.241-a
Abstract:
Microbial Ecology![Figure][1] Microbes increase methane output from shale gas wells. CREDIT: NAMTHIP MUANTHONGTHAE/SHUTTERSTOCK Microbes are thought to contribute to chemical processes that occur during hydraulic fracturing of shale. How these communities develop after injection of fracking
Microbial Ecology![Figure][1] Microbes increase methane output from shale gas wells. CREDIT: NAMTHIP MUANTHONGTHAE/SHUTTERSTOCK Microbes are thought to contribute to chemical processes that occur during hydraulic fracturing of shale. How these communities develop after injection of fracking
Assessment of methane emissions from the U.S. oil and gas supply chain
Alvarez et al., June 2018
Assessment of methane emissions from the U.S. oil and gas supply chain
Ramón A. Alvarez, Daniel Zavala-Araiza, David R. Lyon, David T. Allen, Zachary R. Barkley, Adam R. Brandt, Kenneth J. Davis, Scott C. Herndon, Daniel J. Jacob, Anna Karion, Eric A. Kort, Brian K. Lamb, Thomas Lauvaux, Joannes D. Maasakkers, Anthony J. Marchese, Mark Omara, Stephen W. Pacala, Jeff Peischl, Allen L. Robinson, Paul B. Shepson, Colm Sweeney, Amy Townsend-Small, Steven C. Wofsy, Steven P. Hamburg (2018). Science, eaar7204. 10.1126/science.aar7204
Abstract:
Methane emissions from the U.S. oil and natural gas supply chain were estimated using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 Tg/y, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. EPA inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Significant emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.
Methane emissions from the U.S. oil and natural gas supply chain were estimated using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 Tg/y, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. EPA inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Significant emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.
Estimated Emissions from the Prime-Movers of Unconventional Natural Gas Well Development Using Recently Collected In-Use Data in the United States
Johnson et al., April 2018
Estimated Emissions from the Prime-Movers of Unconventional Natural Gas Well Development Using Recently Collected In-Use Data in the United States
Derek Johnson, Robert Heltzel, Andrew Nix, Mahdi Darzi, Dakota Oliver (2018). Environmental Science & Technology, . 10.1021/acs.est.7b06694
Abstract:
Natural gas from shale plays dominates new production and growth. However, unconventional well development is an energy intensive process. The prime movers, which include over-the-road service trucks, horizontal drilling rigs, and hydraulic fracturing pumps, are predominately powered by diesel engines that impact air quality. Instead of relying on certification data or outdated emission factors, this model uses new in-use emissions and activity data combined with historical literature to develop a national emissions inventory. For the diesel only case, hydraulic fracturing engines produced the most NOx emissions, while drilling engines produced the most CO emissions, and truck engines produced the most THC emissions. By implementing dual-fuel and dedicated natural gas engines, total fuel energy consumed, CO2, CO, THC, and CH4 emissions would increase, while NOx emissions, diesel fuel consumption, and fuel costs would decrease. Dedicated natural gas engines offered significant reductions in NOx emissions. Additional scenarios examined extreme cases of full fleet conversions. While deep market penetrations could reduce fuel costs, both technologies could significantly increase CH4 emissions. While this model is based on a small sample size of engine configurations, data were collected during real in-use activity and is representative of real world activity.
Natural gas from shale plays dominates new production and growth. However, unconventional well development is an energy intensive process. The prime movers, which include over-the-road service trucks, horizontal drilling rigs, and hydraulic fracturing pumps, are predominately powered by diesel engines that impact air quality. Instead of relying on certification data or outdated emission factors, this model uses new in-use emissions and activity data combined with historical literature to develop a national emissions inventory. For the diesel only case, hydraulic fracturing engines produced the most NOx emissions, while drilling engines produced the most CO emissions, and truck engines produced the most THC emissions. By implementing dual-fuel and dedicated natural gas engines, total fuel energy consumed, CO2, CO, THC, and CH4 emissions would increase, while NOx emissions, diesel fuel consumption, and fuel costs would decrease. Dedicated natural gas engines offered significant reductions in NOx emissions. Additional scenarios examined extreme cases of full fleet conversions. While deep market penetrations could reduce fuel costs, both technologies could significantly increase CH4 emissions. While this model is based on a small sample size of engine configurations, data were collected during real in-use activity and is representative of real world activity.
Fracking and Climate Change—Reply
Russell A. Wilke and Jerome W. Freeman, April 2018
Fracking and Climate Change—Reply
Russell A. Wilke and Jerome W. Freeman (2018). JAMA, 1508-1509. 10.1001/jama.2018.0228
Abstract:
In Reply Drs Frumkin and Patz extend the dialogue begun in our Viewpoint on the potential health implications of fracking to include a discussion about climate change. We agree that regulatory agencies monitoring compliance need to be supported. We also agree with the need to further the dialogue...
In Reply Drs Frumkin and Patz extend the dialogue begun in our Viewpoint on the potential health implications of fracking to include a discussion about climate change. We agree that regulatory agencies monitoring compliance need to be supported. We also agree with the need to further the dialogue...
Fracking and Climate Change
Howard Frumkin and Jonathan Patz, April 2018
Fracking and Climate Change
Howard Frumkin and Jonathan Patz (2018). JAMA, 1508-1508. 10.1001/jama.2018.0191
Abstract:
To the Editor Drs Wilke and Freeman provided a helpful discussion of air and water contamination related to fracking.1 However, they omitted key parts of the fracking story. First, methane leaks from fracked wells, sometimes in high quantities, likely accounting in part for recent observed increases...
To the Editor Drs Wilke and Freeman provided a helpful discussion of air and water contamination related to fracking.1 However, they omitted key parts of the fracking story. First, methane leaks from fracked wells, sometimes in high quantities, likely accounting in part for recent observed increases...
Emissions of organic compounds from produced water ponds I: Characteristics and speciation
Lyman et al., April 2018
Emissions of organic compounds from produced water ponds I: Characteristics and speciation
Seth N. Lyman, Marc L. Mansfield, Huy N. Q. Tran, Jordan D. Evans, Colleen Jones, Trevor O'Neil, Ric Bowers, Ann Smith, Cara Keslar (2018). Science of The Total Environment, 896-905. 10.1016/j.scitotenv.2017.11.161
Abstract:
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2–C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013–2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6–C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes.
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2–C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013–2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6–C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes.
On Methane Emissions from Shale Gas Development
Umeozor et al., March 2018
On Methane Emissions from Shale Gas Development
Evar C. Umeozor, Sarah M. Jordaan, Ian D. Gates (2018). Energy, . 10.1016/j.energy.2018.03.151
Abstract:
Environmental and economic impacts of methane escaping from the natural gas supply chain remain uncertain. Flowback emissions from hydraulically fractured natural gas wells are a key component of emissions from unconventional gas wells. While reduced emission completions in the United States are required by regulation, Canada’s proposed regulation will only be implemented in 2020 with the two highest producing provinces under exemption. To understand potential benefits of regulations, we use predictive modelling of well-level production data of 1633 hydraulically fractured shale gas wells in five plays to estimate pre-production emissions. The mean estimate for flowback emissions (2,346±95% confidence interval of 91 Mg CO2e/completion) fall within the 95% confidence limits of measured potential emissions (2,566±777 Mg CO2e/completion). Our results indicate that in 2015, the average emissions per shale gas well undergoing flowback was 2,347 Mg CO2e/completion in the U.S. and 1,859 Mg CO2e/completion in Canada. Mean potential profits from controlling methane emissions using reduced emission completions were US$17,200/well in the U.S. and US$11,200/well in Canada.
Environmental and economic impacts of methane escaping from the natural gas supply chain remain uncertain. Flowback emissions from hydraulically fractured natural gas wells are a key component of emissions from unconventional gas wells. While reduced emission completions in the United States are required by regulation, Canada’s proposed regulation will only be implemented in 2020 with the two highest producing provinces under exemption. To understand potential benefits of regulations, we use predictive modelling of well-level production data of 1633 hydraulically fractured shale gas wells in five plays to estimate pre-production emissions. The mean estimate for flowback emissions (2,346±95% confidence interval of 91 Mg CO2e/completion) fall within the 95% confidence limits of measured potential emissions (2,566±777 Mg CO2e/completion). Our results indicate that in 2015, the average emissions per shale gas well undergoing flowback was 2,347 Mg CO2e/completion in the U.S. and 1,859 Mg CO2e/completion in Canada. Mean potential profits from controlling methane emissions using reduced emission completions were US$17,200/well in the U.S. and US$11,200/well in Canada.
Measuring Leak Rates from Abandoned Natural Gas Wells in Western Pennsylvania
Bradshaw et al., January 2018
Measuring Leak Rates from Abandoned Natural Gas Wells in Western Pennsylvania
JL Bradshaw, JM Slagley, N Iannacchione, M Lees (2018). Journal of Scientific and Industrial Metrology, . 10.21767/2472-1948.100014
Abstract:
The proliferation of unconventional natural gas drilling has brought considerable recent attention to the possible impacts that this new technology may have on greenhouse gas emissions. In Pennsylvania, estimates of these possible impacts are very difficult to accurately assess in large part due to the highly uncertain contribution from legacy abandoned and orphaned gas (AOG) wells. This paper outlines our work in establishing a methodology for measuring the methane leak rate from AOG wells in Western Pennsylvania. The theory and methodology of an enclosure method for measuring the methane mass leak rate from one AOG natural gas well is described. Summary data for four other measurements and three other wells is presented. The goal of this work is to take the first steps towards an accurate determination of the contribution of AOWs to anthropogenic methane emissions in Pennsylvania.
The proliferation of unconventional natural gas drilling has brought considerable recent attention to the possible impacts that this new technology may have on greenhouse gas emissions. In Pennsylvania, estimates of these possible impacts are very difficult to accurately assess in large part due to the highly uncertain contribution from legacy abandoned and orphaned gas (AOG) wells. This paper outlines our work in establishing a methodology for measuring the methane leak rate from AOG wells in Western Pennsylvania. The theory and methodology of an enclosure method for measuring the methane mass leak rate from one AOG natural gas well is described. Summary data for four other measurements and three other wells is presented. The goal of this work is to take the first steps towards an accurate determination of the contribution of AOWs to anthropogenic methane emissions in Pennsylvania.
Retraction: Methane Emissions From the Marcellus Shale in Southwestern Pennsylvania and Northern West Virginia Based on Airborne Measurements
Ren et al., January 2018
Retraction: Methane Emissions From the Marcellus Shale in Southwestern Pennsylvania and Northern West Virginia Based on Airborne Measurements
X. Ren, D. L. Hall, T. Vinciguerra, S. E. Benish, P. R. Stratton, D. Ahn, J. R. Hansford, M. D. Cohen, S. Sahu, H. He, C. Grimes, R. J. Salawitch, S. H. Ehrman, R. R. Dickerson (2018). Journal of Geophysical Research: Atmospheres, 1478-1478. 10.1002/jgrd.54397
Abstract:
The tradeoff between water and carbon footprints of Barnett Shale gas
Absar et al., April 2021
The tradeoff between water and carbon footprints of Barnett Shale gas
Syeda Mariya Absar, Anne-Marie Boulay, Maria F. Campa, Benjamin L. Preston, Adam Taylor (2021). Journal of Cleaner Production, . 10.1016/j.jclepro.2018.06.140
Abstract:
Shale gas production is a water and energy-intensive process that has expanded rapidly in the United States in recent years. This study compared the life cycle water consumption and greenhouse gas emissions from hydraulic fracturing in the Barnett region of Texas, located in one of the most drought prone regions of the United States. Four wastewater treatment scenarios were compared for produced water management in the Barnett region. For each scenario, the cradle-to-gate life cycle global warming potential and water scarcity footprint was estimated per mega joule of gas produced. The results show a trade-off between water and carbon impacts, because energy is required for treatment of water. A reduction of 49 percent in total water consumed or a 28 percent reduction in the water scarcity footprint in the shale gas production process can be achieved at a cost of a 38 percent increase in global warming potential, if the wastewater management shifted from business as usual to complete desalination and reuse of produced water. The results are discussed in the context of wastewater management options available in Texas.
Shale gas production is a water and energy-intensive process that has expanded rapidly in the United States in recent years. This study compared the life cycle water consumption and greenhouse gas emissions from hydraulic fracturing in the Barnett region of Texas, located in one of the most drought prone regions of the United States. Four wastewater treatment scenarios were compared for produced water management in the Barnett region. For each scenario, the cradle-to-gate life cycle global warming potential and water scarcity footprint was estimated per mega joule of gas produced. The results show a trade-off between water and carbon impacts, because energy is required for treatment of water. A reduction of 49 percent in total water consumed or a 28 percent reduction in the water scarcity footprint in the shale gas production process can be achieved at a cost of a 38 percent increase in global warming potential, if the wastewater management shifted from business as usual to complete desalination and reuse of produced water. The results are discussed in the context of wastewater management options available in Texas.
Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development
Johnson et al., November 2017
Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development
Derek R. Johnson, Robert Heltzel, Andrew C. Nix, Nigel Clark, Mahdi Darzi (2017). Applied Energy, 739-750. 10.1016/j.apenergy.2017.08.234
Abstract:
We collected data focusing on in-use emissions and efficiency of engines servicing the unconventional well development industry to elucidate real world impacts from current and newly applied engine technologies. The engines examined during the campaigns were diesel only (DO) and dual fuel (DF) diesel/natural gas, compression-ignition (CI) engines and dedicated natural gas, spark-ignition (SI) engines. These included two CI drilling engines outfitted with two different DF kits, two SI drilling engines, and two CI well stimulation engines. Our data were gathered under the load and speed requirements in the field, and the engines were not under our direct control. Greenhouse gas (GHG) emissions were measured from all engines and fueling types and included both exhaust and crankcase emissions. Fuel consumption and engine data were collected to determine fuel efficiency. During steady-state operation, fuel efficiency was 38%, 26%, and 20% for DO, DF, and SI engines, respectively. The loss of efficiency during DF operation was due in part to uncombusted methane (CH4) slip in the exhaust, which accounted for 18% of the fuel supplied. GHG emissions (carbon dioxide and CH4) from CI engines were 2.25 times higher during DF compared to DO operation. During DF operation, substitution ratio varied depending on engine load and DF kit, ranging from 9% to 74%. GHG emissions from the SI engines were 1.33 times higher than DO due to lower efficiencies of throttled and rich operation as compared to unthrottled and lean operation for CI engines.
We collected data focusing on in-use emissions and efficiency of engines servicing the unconventional well development industry to elucidate real world impacts from current and newly applied engine technologies. The engines examined during the campaigns were diesel only (DO) and dual fuel (DF) diesel/natural gas, compression-ignition (CI) engines and dedicated natural gas, spark-ignition (SI) engines. These included two CI drilling engines outfitted with two different DF kits, two SI drilling engines, and two CI well stimulation engines. Our data were gathered under the load and speed requirements in the field, and the engines were not under our direct control. Greenhouse gas (GHG) emissions were measured from all engines and fueling types and included both exhaust and crankcase emissions. Fuel consumption and engine data were collected to determine fuel efficiency. During steady-state operation, fuel efficiency was 38%, 26%, and 20% for DO, DF, and SI engines, respectively. The loss of efficiency during DF operation was due in part to uncombusted methane (CH4) slip in the exhaust, which accounted for 18% of the fuel supplied. GHG emissions (carbon dioxide and CH4) from CI engines were 2.25 times higher during DF compared to DO operation. During DF operation, substitution ratio varied depending on engine load and DF kit, ranging from 9% to 74%. GHG emissions from the SI engines were 1.33 times higher than DO due to lower efficiencies of throttled and rich operation as compared to unthrottled and lean operation for CI engines.
Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada
Atherton et al., October 2017
Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada
Emmaline Atherton, David Risk, Chelsea Fougere, Martin Lavoie, Alex Marshall, John Werring, James P. Williams, Christina Minions (2017). Atmospheric Chemistry and Physics, 12405-12420. 10.5194/acp-17-12405-2017
Abstract:
North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-oad plumes to oil-and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s(-1) at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47% of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate >0.59 g s(-1)) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.
North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-oad plumes to oil-and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s(-1) at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47% of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate >0.59 g s(-1)) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.
Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement
Geoffrey Roest and Gunnar Schade, September 2017
Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement
Geoffrey Roest and Gunnar Schade (2017). Atmospheric Chemistry and Physics, 11163-11176. 10.5194/acp-17-11163-2017
Abstract:
The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C-2-C-4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7% with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17% of methane emissions, 55% of ethane, 82% percent of propane, 90% of n-butane, and 83% of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0% (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.
The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C-2-C-4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7% with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17% of methane emissions, 55% of ethane, 82% percent of propane, 90% of n-butane, and 83% of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0% (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.
Spatiotemporal Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin
Lavoie et al., July 2017
Spatiotemporal Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin
Tegan N. Lavoie, Paul B. Shepson, Maria O. L. Cambaliza, Brian H. Stirm, Stephen Conley, Shobhit Mehrotra, Ian C. Faloona, David Lyon (2017). Environmental Science & Technology, . 10.1021/acs.est.7b00814
Abstract:
Methane emissions from oil and gas facilities can exhibit operation-dependent temporal variability; however, this variability has yet to be fully characterized. A field campaign was conducted in June 2014 in the Eagle Ford basin, Texas, to examine spatiotemporal variability of methane emissions using four methods. Clusters of methane-emitting sources were estimated from 14 aerial surveys of two (“East” or “West”) 35 × 35 km grids, two aircraft-based mass balance methods measured emissions repeatedly at five gathering facilities and three flares, and emitting equipment source-types were identified via helicopter-based infrared camera at 13 production and gathering facilities. Significant daily variability was observed in the location, number (East: 44 ± 20% relative standard deviation (RSD), N = 7; West: 37 ± 30% RSD, N = 7), and emission rates (36% of repeat measurements deviate from mean emissions by at least ±50%) of clusters of emitting sources. Emission rates of high emitters varied from 150–250 to 880–1470 kg/h and regional aggregate emissions of large sources (>15 kg/h) varied up to a factor of ∼3 between surveys. The aircraft-based mass balance results revealed comparable variability. Equipment source-type changed between surveys and alterations in operational-mode significantly influenced emissions. Results indicate that understanding temporal emission variability will promote improved mitigation strategies and additional analysis is needed to fully characterize its causes.
Methane emissions from oil and gas facilities can exhibit operation-dependent temporal variability; however, this variability has yet to be fully characterized. A field campaign was conducted in June 2014 in the Eagle Ford basin, Texas, to examine spatiotemporal variability of methane emissions using four methods. Clusters of methane-emitting sources were estimated from 14 aerial surveys of two (“East” or “West”) 35 × 35 km grids, two aircraft-based mass balance methods measured emissions repeatedly at five gathering facilities and three flares, and emitting equipment source-types were identified via helicopter-based infrared camera at 13 production and gathering facilities. Significant daily variability was observed in the location, number (East: 44 ± 20% relative standard deviation (RSD), N = 7; West: 37 ± 30% RSD, N = 7), and emission rates (36% of repeat measurements deviate from mean emissions by at least ±50%) of clusters of emitting sources. Emission rates of high emitters varied from 150–250 to 880–1470 kg/h and regional aggregate emissions of large sources (>15 kg/h) varied up to a factor of ∼3 between surveys. The aircraft-based mass balance results revealed comparable variability. Equipment source-type changed between surveys and alterations in operational-mode significantly influenced emissions. Results indicate that understanding temporal emission variability will promote improved mitigation strategies and additional analysis is needed to fully characterize its causes.
Analysis of gas leakage occurrence along wells in Alberta, Canada, from a GHG perspective – Gas migration outside well casing
Stefan Bachu, June 2017
Analysis of gas leakage occurrence along wells in Alberta, Canada, from a GHG perspective – Gas migration outside well casing
Stefan Bachu (2017). International Journal of Greenhouse Gas Control, 146-154. 10.1016/j.ijggc.2017.04.003
Abstract:
Leakage of natural gas (mainly methane) along oil and gas wells contributes to fugitive greenhouse gas emissions. Natural gas leakage occurring outside the well casing and cement sheath and reaching the surface, hence the atmosphere, is known as Gas Migration (GM). In this paper an analysis of the occurrence of gas (methane) migration along wellbores in Alberta, Canada, is presented based on data obtained from the Alberta Energy Regulator. Gas migration (GM) has been reported in 3276 wells, i.e., in 0.73% of all the wells in the province. Most of these wells (2745) are located in the eastern, shallower part of the province, particularly in the Lloydminster – Cold Lake area. The wells are mostly shallow, with 2800 wells being shallower than 1000 m depth. About half of the wells are cemented to the top, showing that lack of cementing to the top or at least above the surface casing shoe is not a major factor in the occurrence of GM. Similarly, well orientation is not a strong indicator of GM potential or occurrence A slight majority (54.1%) of the wells with GM are conventional wells, with the balance (45.9%) being thermal wells, of which the great majority is in the Cold Lake oil sands area where cyclic steam injection is used for bitumen production. The analysis indicates that the production type, conventional for oil and gas, or thermal for heavy oil and bitumen, is a strong indicator of the potential for, or occurrence for GM. The depth of the gas source is provided in the database for 559 wells. When related to the well depth, the relative depth of the gas source has an average of 0.42, indicating that the origin of the gas source is, by and large, above the producing reservoirs. Isotopic studies of reservoir and migrating gas in Alberta, reviewed in this paper, indicate that in the great majority of cases the migrating gas is immature thermogenic gas originating in overlying shales, as well as coal gas originating from the various overlying coal beds. In a number of cases the migrating gas is of shallow, biogenic origin, likely sourced from shallow groundwater aquifers. Biogenic methanogenesis is enhanced by the high temperatures associated with thermal wells, which may explain the large number of GM cases associated with thermal wells.
Leakage of natural gas (mainly methane) along oil and gas wells contributes to fugitive greenhouse gas emissions. Natural gas leakage occurring outside the well casing and cement sheath and reaching the surface, hence the atmosphere, is known as Gas Migration (GM). In this paper an analysis of the occurrence of gas (methane) migration along wellbores in Alberta, Canada, is presented based on data obtained from the Alberta Energy Regulator. Gas migration (GM) has been reported in 3276 wells, i.e., in 0.73% of all the wells in the province. Most of these wells (2745) are located in the eastern, shallower part of the province, particularly in the Lloydminster – Cold Lake area. The wells are mostly shallow, with 2800 wells being shallower than 1000 m depth. About half of the wells are cemented to the top, showing that lack of cementing to the top or at least above the surface casing shoe is not a major factor in the occurrence of GM. Similarly, well orientation is not a strong indicator of GM potential or occurrence A slight majority (54.1%) of the wells with GM are conventional wells, with the balance (45.9%) being thermal wells, of which the great majority is in the Cold Lake oil sands area where cyclic steam injection is used for bitumen production. The analysis indicates that the production type, conventional for oil and gas, or thermal for heavy oil and bitumen, is a strong indicator of the potential for, or occurrence for GM. The depth of the gas source is provided in the database for 559 wells. When related to the well depth, the relative depth of the gas source has an average of 0.42, indicating that the origin of the gas source is, by and large, above the producing reservoirs. Isotopic studies of reservoir and migrating gas in Alberta, reviewed in this paper, indicate that in the great majority of cases the migrating gas is immature thermogenic gas originating in overlying shales, as well as coal gas originating from the various overlying coal beds. In a number of cases the migrating gas is of shallow, biogenic origin, likely sourced from shallow groundwater aquifers. Biogenic methanogenesis is enhanced by the high temperatures associated with thermal wells, which may explain the large number of GM cases associated with thermal wells.
Methane emissions from the Marcellus Shale in southwestern Pennsylvania and northern West Virginia based on airborne measurements
Ren et al., April 2017
Methane emissions from the Marcellus Shale in southwestern Pennsylvania and northern West Virginia based on airborne measurements
Xinrong Ren, Dolly L. Hall, Timothy Vinciguerra, Sarah E. Benish, Phillip R. Stratton, Doyeon Ahn, Jonathan R. Hansford, Mark D. Cohen, Sayantan Sahu, Hao He, Courtney Grimes, Ross J. Salawitch, Sheryl H. Ehrman, Russell R. Dickerson (2017). Journal of Geophysical Research-Atmospheres, 4639-4653. 10.1002/2016JD026070
Abstract:
Natural gas production in the U.S. has increased rapidly over the past decade, along with concerns about methane (CH4) leakage (total fugitive emissions), and climate impacts. Quantification of CH4 emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound, cost-effective policies for mitigating greenhouse gases. We use aircraft measurements and a mass balance approach for three flight experiments in August and September 2015 to estimate CH4 emissions from O&NG operations in the southwestern Marcellus Shale region. We estimate the mean1 sigma CH4 emission rate as 36.71.9kgCH(4)s(-1) (or 1.160.06TgCH(4)yr(-1)) with 59% coming from O&NG operations. We estimate the mean1 sigma CH4 leak rate from O&NG operations as 3.9 +/- 0.4% with a lower limit of 1.5% and an upper limit of 6.3%. This leak rate is broadly consistent with the results from several recent top-down studies but higher than the results from a few other observational studies as well as in the U.S. Environmental Protection Agency CH4 emission inventory. However, a substantial source of CH4 was found to contain little ethane (C2H6), possibly due to coalbed CH4 emitted either directly from coalmines or from wells drilled through coalbed layers. Although recent regulations requiring capture of gas from the completion venting step of the hydraulic fracturing appear to have reduced losses, our study suggests that for a 20year time scale, energy derived from the combustion of natural gas extracted from this region will require further controls before it can exert a net climate benefit compared to coal.
Natural gas production in the U.S. has increased rapidly over the past decade, along with concerns about methane (CH4) leakage (total fugitive emissions), and climate impacts. Quantification of CH4 emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound, cost-effective policies for mitigating greenhouse gases. We use aircraft measurements and a mass balance approach for three flight experiments in August and September 2015 to estimate CH4 emissions from O&NG operations in the southwestern Marcellus Shale region. We estimate the mean1 sigma CH4 emission rate as 36.71.9kgCH(4)s(-1) (or 1.160.06TgCH(4)yr(-1)) with 59% coming from O&NG operations. We estimate the mean1 sigma CH4 leak rate from O&NG operations as 3.9 +/- 0.4% with a lower limit of 1.5% and an upper limit of 6.3%. This leak rate is broadly consistent with the results from several recent top-down studies but higher than the results from a few other observational studies as well as in the U.S. Environmental Protection Agency CH4 emission inventory. However, a substantial source of CH4 was found to contain little ethane (C2H6), possibly due to coalbed CH4 emitted either directly from coalmines or from wells drilled through coalbed layers. Although recent regulations requiring capture of gas from the completion venting step of the hydraulic fracturing appear to have reduced losses, our study suggests that for a 20year time scale, energy derived from the combustion of natural gas extracted from this region will require further controls before it can exert a net climate benefit compared to coal.
Airborne quantification of methane emissions over the Four Corners region
Smith et al., April 2017
Airborne quantification of methane emissions over the Four Corners region
Mackenzie L Smith, Alexander Gvakharia, Eric A. Kort, Colm Sweeney, Stephen A. Conley, Ian C. Faloona, Tim Newberger, Russell Schnell, Stefan Schwietzke, Sonja Wolter (2017). Environmental Science & Technology, . 10.1021/acs.est.6b06107
Abstract:
Methane (CH4) is a potent greenhouse gas and the primary component of natural gas. The San Juan Basin (SJB) is one of the largest coal-bed methane producing regions in North America and, including gas production from conventional and shale sources, contributes ~2% of U.S. natural gas production in 2015. In this work, we quantify the CH4 flux from the SJB using continuous atmospheric sampling from aircraft collected during the TOPDOWN2015 field campaign in April 2015. Using five independent days of measurements and the aircraft-based mass balance method, we calculate an average CH4 flux of 0.54 ± 0.20 Tg yr-1 (1σ), in close agreement with the previous space-based estimate made for 2003-2009. These results agree within error with the US EPA gridded inventory for 2012. These flights combined with the previous satellite study suggests CH4 emissions have not changed. While there have been significant declines in natural gas production between measurements, recent increases in oil production in the SJB may explain why emission of CH4 has not declined. Airborne quantification of outcrops where seepage occurs are consistent with ground-based studies that indicate these geological sources are a small fraction of the basin total (0.02-0.12 Tg yr-1) and cannot explain basin-wide consistent emissions from 2003-2015.
Methane (CH4) is a potent greenhouse gas and the primary component of natural gas. The San Juan Basin (SJB) is one of the largest coal-bed methane producing regions in North America and, including gas production from conventional and shale sources, contributes ~2% of U.S. natural gas production in 2015. In this work, we quantify the CH4 flux from the SJB using continuous atmospheric sampling from aircraft collected during the TOPDOWN2015 field campaign in April 2015. Using five independent days of measurements and the aircraft-based mass balance method, we calculate an average CH4 flux of 0.54 ± 0.20 Tg yr-1 (1σ), in close agreement with the previous space-based estimate made for 2003-2009. These results agree within error with the US EPA gridded inventory for 2012. These flights combined with the previous satellite study suggests CH4 emissions have not changed. While there have been significant declines in natural gas production between measurements, recent increases in oil production in the SJB may explain why emission of CH4 has not declined. Airborne quantification of outcrops where seepage occurs are consistent with ground-based studies that indicate these geological sources are a small fraction of the basin total (0.02-0.12 Tg yr-1) and cannot explain basin-wide consistent emissions from 2003-2015.
Methane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, ND
Gvakharia et al., April 2017
Methane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, ND
Alexander Gvakharia, Eric A. Kort, Adam R. Brandt, Jeff Peischl, Thomas B. Ryerson, Joshua P. Schwarz, Mackenzie L. Smith, Colm Sweeney (2017). Environmental Science & Technology, . 10.1021/acs.est.6b05183
Abstract:
Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed, nor between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting lognormal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98\% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.
Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed, nor between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting lognormal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98\% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.
Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales
Chen et al., February 2017
Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales
Yizhong Chen, Li He, Yanlong Guan, Hongwei Lu, Jing Li (2017). Energy Conversion and Management, 382-398. 10.1016/j.enconman.2016.12.019
Abstract:
This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System
Mayfield et al., February 2017
System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System
Erin Noel Mayfield, Allen L. Robinson, Jared L. Cohon (2017). Environmental Science & Technology, . 10.1021/acs.est.6b05052
Abstract:
This paper assesses tradeoffs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity datasets, we developed a new processed-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from $160M to $1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.
This paper assesses tradeoffs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity datasets, we developed a new processed-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from $160M to $1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.