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There is a need to protect fresh and brackish
groundwater resources from all sources of degradation
including those associated with oil and gas development.

Potential causes of degradation of groundwater resources include:

Disposal of oil and gas wastewater into fresh and brackish aquifers
(1,142,Class II disposal wells with aquifer exemptions)

On and off pad spills of product and wastewater (thousands)

Seepage of wastewater from impoundments and pits (In 1984, there
were at least 122,000 unlined pits in U.S.).

“Beneficial” use (disposal of wastewater using aquifer recharge,
irrigation, and road spreading).

Injection of stimulation fluids vertically near formations containing
fresh and brackish groundwater

Injection of stimulation fluids into formations containing fresh and
brackish groundwater (occurrence and impact)
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Center Portlon of the Pav11110n, WY Field
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Shallow to unknown depth groundwater contamination due to disposal of diesel fuel based
drilling mud and production fluids disposed in 64 unlined pits

Deeper groundwater (700 — 1000 ft) contamination from stimulation fluids. P s-



Geology and Hydrocarbon Production in the Pavillion Field

PST

Conventional development and
hydraulic fracturing in Lower
Tertiary Wind River and Fort Union
Formations

Mostly gas, some oil migration via
fault and fractured media

Pavillion Field
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Principal Aquifer Systems in the Wind River Basin
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— Upper Cretaceous aquifers

Principal Aquifer Systems in the Wind River Basin
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Principal Aquifer Systems in the Wind River Basin
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Principal Aquifer Systems in the Wind River Basin
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Deep brackish
groundwater
resources exist
in the Rocky
Mountain
Region

Ada-Vamooss aquier

Arbuckle-Simpsan squiter

Blsing squiter

Central Didshoma squiter

Coloredo Plateaus aquifers

Denver Basin 2quier system

Etwards-Trinity aquiier system

High Piains squider

Lower Crefaceous agquiiers

Lower Tertiary
Aquifers

Modified from
Stanton et al. (2017)
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From 500 —
3000 ft

100% of cell
volume have

=) TDS < 10,000

mg/L.

> 95% cell
volume have
TDS < 3,000
mg/L.

Cell size:
10 km x 10 km

'Wyeming (Upper) Tertisny aquiters

Principal quiier not present or not detemined

Wesizm Mid continent regian

p H [ Bl B
Observed grid cell volume, in percent
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balow land surtace

Mote: Volumes are based on ged cells that have been categonzed by using the maximum dissolved-solids concendration in each cadl,
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TDS and Major Ion Concentrations in Wind River Formation

Pavillion Area (EPA Data)

Parameter Daddow (1996) Plafcan et al. (1995)
Median (Range) | Median (Range) Median (Range)

DS 490 (211-5110) 1030  (248-5100) 925 (302-4921)
Ca 10  (1-486) 45 (1.7-380) 51 (3.3-452)
Mg 22 (0.1-195) 8.2 (0.095-99) 5.3 (0.02-147)
Na 150 (5-1500) 285 (4.5-1500) 260 (42-1290)
K 2.45 (0.1-30) 2.45 (0.18-10.5)
o 201  (2-3250) 510 (12-3300) 551 (90-3640)
cl 14  (2-466) 20 (3-420) 21 (2.6-78)

F 0.7 (0.1-8.8) 0.9 (0.2-4.9) 0.9 (0.2-4.1)

Major ion chemistry in domestic wells in
Pavillion Field is typical of the Wind River
Formation (elevated TDS and SO,)

Table from DiGiulio and Jackson (2016)

Secondary Standards
TDS = 500 mg/L
SO, =250 mg/L
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Current Use of Wind River Formation, Potential
Use of Fort Union Formation

Wind River Formation

* Primary source of drinking water
throughout the Wind River Basin
(Daddow 1996).

* The largest number of documented
domestic well completions in
Fremont County (Plafcan et al.
1995).

* 5 municipal wells in Town of
Pavillion supply 20,000 gpd and 7.3
million gallons per year (James
Gores & Associates 2011)

* Supplies drinking water for domestic

wells in Pavillion area (James Gores
& Associates 2011)

Fort Union Formation

Wind River and Fort Union
Formations defined as aquifers by
Wyoming Water Development

Office (WWDO 2003).

Aquifer exemption required for
injection of produced water into
Fort Union Formation at
Shoshone-Arapahoe 16-34 located
3.5 mi northwest of Pavillion Field
(EPA 2013).

Total dissolved solids range from
about 1,000 to 5,000 ppm
(McGreevy et al. 1969).

PSLC




Do the Wind River and Fort Union Formations meet the definition of USDW
at Depths of Stimulation in the Pavillion Field?

No, because of Wyoming’s Groundwater
Classification System

Yes, because:

Wyoming Department of Environmental Quality Cheﬁ)ter 8
§ ulasll)ty tandards for Wyoming Groundwaters (WDEQ

* Class I — domestic use (TDS < 500 mg/L)
* Class II — agricultural use (TDS < 2,000 mg/L)
» Class III — livestock use (TDS < 5,000 mg/L)
* Class IV (A) — industry use
- Class IV (A) (TDS < 10,000 mg/L)
- Class IV (B) (TDS > 10,000 mg/L)
* Class V [no TDS criterion]
- Class V (hydrocarbon commercial)
- Class V (mineral commercial)
- Class V (geothermal)
e Class VI — unsuitable for use

- “excessive” TDS [undefined]

- “so contaminated that it would be economically or

technologically impractical to make the water
usable”

- “located in such as way, including depth below the

surface, so as the make use economically and
technologically impractical.”

* EPA explicitly stated that USDWs exist in the
Pavillion Field: DiGiulio et al. (2011), EPA
(2013), EPA (2016).

* TDS levels and groundwater yield clearly
meet the definition of USDWs.

* The definition of an USDW is not dependent
on a state groundwater classification system

» The presence of natural gas does not
invalidate the definition of an USDW (an
aquifer exemption is required for this

purpose).

* C(lass V does not have a TDS criterion
meaning that Class V groundwater can also
meet Class 1. II, or III water criteria as was
the case at Pavillion.

* For Class VI water, there 1s no definition of
excessive TDS.

* For Class VI, groundwater would not have
been contaminated without oil and gas
development.

* For Class VI, groundwater is not too deep for
use (in some cases, domestic use at same

depths of stimulation at Pavillion)
I S [ =



Production Well Stimulation Occurred at Depths of Deepest

Groundwater Use in the Pavillion, WY Field

Elevation (AMSL - m)
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Hydraulic Fracturing
Approximate land surface
1500
- Deepest domestic water wells in Pavillion area
1250 Lo - -
I. - 8 “. : ...’O; -
] H ° ° o .::.:'. . ® °
1000 B ?.:;_—::Eﬁ . ;
: i ta o . v
u ... [ ] .~ )
750 : : :4; ';e.e * ° :
° ° o. .:‘:.f ) ] -
F ' ® .~. :3.;' E . =o
500 - NORE ] . :
‘ L] o ¢ N
250 : S N a3
° : ° ° =.. 1] L O - .. : ° —
. -: ° e © .: :: ‘3 °e . °
O [ - : : e ° .: :.ﬂ ° - H > °
1997 1999 2001 2003 2005 2007
Year

-250

-500

-750

-1000

-1250

-1500

-1750

Approximate Depth Below Surface (m)

Figure from DiGiulio and Jackson (2016)
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The Eocene (34-55 mya) Wind River flowed through
the Pavillion Field

Pavillion
Field

Figure modified
from Seeland

(1978)
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Photograph from
DiGiulio et al.
(2011)

White coarse-grained
sandstone targeted by
local water well drillers
and often referred to as
“water sands” in Morris
et al. (1959) present in
Pavillion Field
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The Wind River and Fort Union Formations exhibit extremely physical
heterogeneity formed under fluvial depositional environments

* Contains connected, poorly
connected, and
unconnected water bearing 200
sandstone units (McGreevy Ft.

1969).

* Sandstone units may be
connected by fracture
systems (Morris et al.

1959)

« Sandstone units surrounded
by discontinuous
mudstone, and shale units.

* No extensive areal
confining units.

:l Overbank fluvial mudstones and siltstones

Meandering and multi-storied fluvial channel systems

- Overbank swamp/coal deposits

Braided stream conglomerate depaosits formed by
drainage of nearby highland areas

Figure from Flores and Keighin (1993)
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The Wind River and Fort Union Formations are Variably Water
Saturated in the Pavillion Field

Gas Well

Monitoring Well  Water Well

Approximate depth
below ground (ft)

Surface casing length
220-2,300 ft

=

Uncemented
bradenhead annulus

/'

Wellbore
Casing ‘

Cement

Perforation

Sand pack
Natural gas

Water
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Production casing
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Wind River Formation

Salinity range: ~600-6,000 mg/L TDS

Hydraulic fracturing depths:

typically 1,500 — 6,000 feet

e

=~
—K

Fort Union Formation

Salinity range: ~1,000-5,000 mg/L TDS

Not to scale

0

~30-750

775-580

~3,400

~6,200

Figure from
EPA (2016)

Gas saturation in sandstone units increases with depth.

Volumetric calculations indicate that gas saturation can be spatially extensive with low water to gas
recovery rates in many production wells. But

Significant groundwater resources exist within both formations at depth (noted in drilling logs or
production wells shut in because of water production).

Impact to USDWs then depends on advective-dispersive transport to water saturated sandstone units.

Transport distance?

PSL




VRONETTAL
Factors Indicating Egclencel;l[(e"cﬁnuuqu e
Impact to USDWs in Wells from Production Well Stmulation and Compietion practices in

the Pavillion, Wyoming, Field

the P aVillion, WY Field Dominic C. DiGiulio®" and Robert B. Jackson"**

%Dcpartmcnt of Earth System Science, *Woods Institute for the Environment, and $Precourt Institute for Energy, Stanford University,
Stanford, California 94305, United States

At least 41.5 million liters (or ~11 million gallons) of stimulation fluids was injected
into formations containing USDWs in the Pavillion Field. The cumulative volume of
well stimulation in closely spaced vertical wells in the Pavillion Field is characteristic
of high volume hydraulic fracturing in shale units.

Five Lines of Reasoning

* Injection of stimulation fluids directly into water-bearing sandstone units.

* Fracture propagation and leakoff of stimulation fluids into water-bearing sandstone
units (distance to water-bearing units meters or tens of meters)

* Pressure build-up during stimulation far in excess of drawdown during production.
* Loss of zonal isolation in production wells during hydraulic fracturing.

* Detection of organic compounds associated with well stimulation in EPA
monitoring wells.

PSLC



Injection of Stimulation Fluids
into Water-Bearing Zones

3. On 10/16/1964, hydraulic

fracturing at 1058 ft with CO,

foam and 4,360 gallons of
methanol.

2. 0n 3/25/1993, “plug back
water bearing perforation in
the Fort Union at 3744-3780
witha 7" CIBP”

1. On 10/16/1964, hydraulic

fracturing with 12,000 gallons o —

of #2 diesel at 3744-3780 ft

PScC

xa* 5%

Tribal Pavillion 14-01

P&A
March
2018

Information from
well completion
and sundry
notices available
from
http://wogcc.state.

wy.us/legacywoge
ce.cfm




Fracture Propagation and Leakoff into Water-Bearing Zones

* Distances to water-bearing
sandstone units in the Pavillion
Field (likely on the order of

meters to tens of meters).

* Leakoff increases in complex
fracture networks as a result of
lithologic variation over short
distances and contact with
permeable strata (Adachi et al
2007, Fisher and Warpinski
2011, Valko6 and Economides
1999, Yarushina et al 2013)
typical of the Wind River and
Fort Union Formations.

* Leakoff can remove much or
most of the fracturing fluid
even for moderate sized
induced fractures (Adachi et al
2007, Fisher and Warpinski
2011).

Simple Fracture

Complex Fracture /
Cross-linked gel -

Foam or linear gel

/Complcx Fracture / //iom plex Fracture

With Fissure Opening Network
Hybrid Slickwater

Figure from CCST (2015) modified from Warpinski (2009)
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Instantaneous Shut-In Pressures Indicate Strong

Hydraulic Gradients
Top of Stimulation Interval (ft bgs)
656 1312 1969 2625 3281 3937 4593 5249 5906
404 ° Hydraulic Fracturing ' I ' ° ' 5803
|l = Acid Stimulation i
36 4 = Acid Stimulation (22-12) 5273
1 e Hydraulic Fracturing (22-12) i
32 4 © Hydraulic Fracturing (13-12) ° 4642
] e Hydraulic Fracturing (23-12) i
28 - Hydraulic Fracturing (other wells) . 4062
. o -
ng 24 . _ 3482 *%73
= | Hydrostatic Gradient =
Ny 20 o o e 2901 ~
p— - ® - 7)
Z 16 ?, 2321 =
i /m -
12 1741
8 1161
4 .' ; ) 580
] ° ]
0 | - = o 0
200 400 600 800 1000 1200 1400 1600 1800
Top of Stimulation Interval (m bgs) Figure modified from
DiGiulio and Jackson (2016)

High pressure gradients in excess of hydrostatic pressure (up to 40.1 MPa or 4100 m
of hydraulic head. Pressure buildup far in excess of drawdown during fluid recovery.
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Water Chemistry Changes at PGDW2(
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Potential Loss of Zonal Isolation

Information from well completion and

Casing failure occurred at 5 production sundry notices available from
http://wogcc.state.wy.us/legacywogcce.cfim

wells. Casing failure at Tribal 21-15 1s one

example.

Surface casing at 619’

1. Dec 1979 —

well completion. 5. On 5/7/2012, sundry notice
Invert mud. » | stated that a mechanical integrity
CBL/ VDL N test conducted indicated “‘failed

missing from
file — depth to

casing” between 735’ — 1105°.
Date of failure unknown.

6. Letter on 8/14/2012 from
WDEQ to BLM requesting
information on potential
release of stimulation fluids
to depth of failed casing.

7. On 8/23/2012, response
from BLM reiterated
information in file providing
no additional information.

8. To date, no casing

primary cement

unknown 4. Oct 1982 - Cement squeeze at 1550°.

Reason for cement squeeze not provided.

remediation. No
Bradenhead testing.

3. Sep 1982 - Acid stimulation (1000 gallons) at 2622’

2. Sep 1982 — Recompletion - packer set at 3294’

Tribal 21-15

PSLC



Potential Loss of Zonal Isolation

— Surface casing at 444°

1. Completion in Mar 1977. Frac at

4870’ with 102,000 gal of gel water.

2.0n 1/11/2005, a cement bond-
variable density log conducted at
400 psig indicated top of cement at

1850’ with high amplitude to 2050°.

Y, R
——
o ooy o "
e
R "\l""’" S ¥
N o ]
-
» MKt
i )

— Invert mud (up to 78% diesel oil) from 444’ — 1850’

1025°

3. 0n 1/21/2005, a “hole” in casing at 1025°-
1062’ was reported. Date hole formed unknown.
No cement outside casing. 1375 psig casing
pressure in 1977. Hydrostatic pressure 443 psig.

4. On 1/25/2005, cement P&A
1775° squeezes at 1062’ and 1775°. March

6. On 2/12/2005, slickwater frac at
| 2070 at 5711 psig. At most, 20’ of
good bonding above frac.

(burst pressure ~ 5350 psig).

5. On 2/8/2005, slickwater frac with CO,
assist at 2671’ at 5546 psig on 2/8/2005

7. In a wellbore diagram dated 10/5/2011, casing
was parted at 2593 and 2597’ (12/21/2006).

Blankenship 4-8 Information from well completion and sundry notices
available from http://wogcc.state.wy.us/legacywogcce.cfm
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Tribal Pavillion

11-11B

Information from well
completion and sundry
notices available from

http://wogcc.state.wy.u
s/legacywogcce.cfin

3. On 2/18/2005,
frac at 1516’ below
cement of
questionable
quality.

Potential Loss of Zonal Isolation
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EPA Monitoring Wells

Figure from DiGiulio et al. 2011 Ps:
[



EPA Monitoring Wells
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EPA Monitoring Wells
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Organic Compounds Detected in EPA Monitoring Wells
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Salts Used for Stimulation
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Elevated Chloride/Sulfate Ratio for MW02
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Detection of Alcohols

Concentration (ug/L)
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Alcohols Used for Stimulation
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Detection of BTEX Compounds

Concentration (ug/L)
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Detection of Trimethylbenzenes,
Alkylbenzenes, and Naphthalenes

Bl MWO1-Phase 111 ] MWOI-Phase IV [ |MWOI1-Phase V

Bl MW02-Phase 111 [ ]MWO02-Phase IV [ | MWO02-Phase V
160 T T T T T y T g T T T T T

T

148
140 - =

120

—_
S
(=)

Concentration (ug/L)
g g
o

43.6 45.5
355 -

N
(e}
1

2.85 5.52

N
-}
~
—_— N
\O

o o o o o o o o
& & & & & & & &
NG v v NG v ® ® >
d k) d 9 k2 > > N
F & & O » $ § N
N S e ) K S & F
~d s & K K ,;6\ ,Qg\“\
& & g & N & ¢
Ny ’ %?( B ! \;& f'»"®
N N N

PSLC



Detection of Hydrocarbons and Degradation Products

Concentration (mg/L)
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Petroleum-Based Compounds Used for Stimulation
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Detection of Alkylphenols

Concentration (ug/L)
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Ethoxylated Alcohols and Surfactants Used for Stimulation
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Detection of Glycols and 2-Butoxyethanol

Concentration (ug/L)
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Glycols and 2-Butoxyethanol Used for Stimulation
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Detection of Degradation Products

Concentration (ug/L)
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Detection of Degradation Products

Concentration (ug/L)
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Detection of Degradation Products
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Conclusions

* Criteria for protected groundwater in states are ambiguous and in many
cases do not protect brackish groundwater to the standard of an USDW.

* As demonstrated by data from the Pavillion, WY Field, hydraulic
fracturing into USDWs 1s occurring.

* As demonstrated by data from the Pavillion, WY Field, impact to
USDWs is occurring.
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