Risk Posed to Groundwater Resources by the Disposal of Produced Water into Unlined Produced Water Ponds in California

Dominic C. DiGiulio, PhD¹, and Seth B.C. Shonkoff, PhD, MPH^{1,2,3}

 ¹ PSE Healthy Energy, Oakland, CA
² Department of Environmental Science, Policy, Management, University of California, Berkeley, CA

³ Lawrence Berkeley National Laboratory, Berkeley, CA

GWPC Annual Forum September 15-17, 2019

Outline of Presentation

- Background
- Tracking of Unlined Produced Water Ponds
- Groundwater Resources in the Tulare Basin of the San Joaquin Valley
- A case study

Background

Valleys and Basins

- The San Joaquin Valley occupies the southern two-thirds of the Central Valley.
- The San Joaquin Valley is separated into the San Joaquin Basin to the north and the Tulare Basin to the south.
- Nearly all unlined produced water ponds are in the Tulare Basin

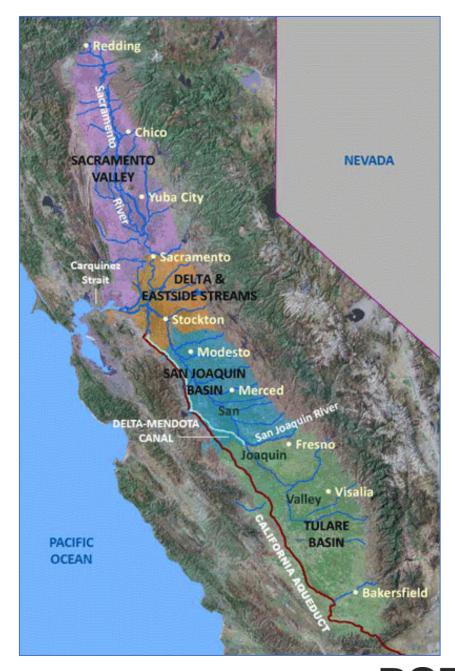


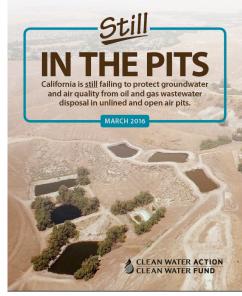
Figure from USGS 2019

Produced Water Ponds

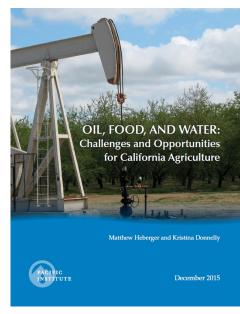
An <u>active produced water pond</u> is currently receiving produced water (SWRCB 2019). An <u>inactive produced water pond</u> has a physical connection to a produced water source, but not currently receiving produced water (SWRCB 2019).

Aerial image of McKittrick 1-1 from Geotracker

Aerial image of McKittrick 6A, 6B from Geotracker


In large complexes, produced water enters smaller unlined ponds that provide for floatation and skimming of remaining undissolved oil prior to flowing into larger unlined ponds for evaporation and percolation (Jordon et al. 2015). Disposal of produced water into unlined pits, sumps, or ponds has been ongoing in California since at least the early 1900s (Bean and Logan 1983).

Previous Work on Unlined Produced Water Ponds in the San Joaquin Valley



Jordon et al. (2015) Stringfellow et al. (2015)

UPDATE ON OIL AND GAS WASTEWATER DISPOSAL IN CALIFORNIA

Grinberg 2016

Heberger and Donnelly (2015)

Soon to be Released Report

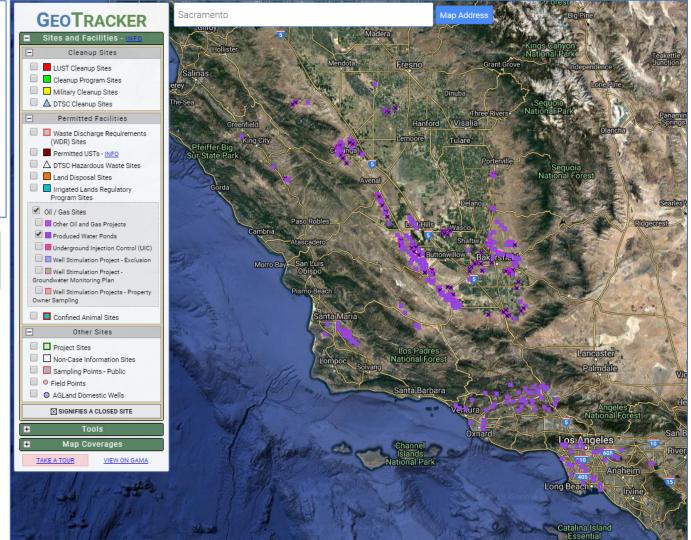
An Assessment of Oil and Gas Water Cycle Reporting in California:

Evaluation of Data Collected Pursuant to California Senate Bill 1281, Phase II Report

An Independent Review of Scientific and Technical Information

Chapter 4 (DiGiulio and Shonkoff 2019) Potential Impact to Groundwater Resources from Disposal of Produced Water into Unlined Produced Water Ponds in the San Joaquin Valley

Tracking of Unlined Produced Water Ponds


Tracking of Disposal Volumes by the Division of Oil, Gas, and Geothermal Resources (DOGGR)

Code	Well Production and	In 2014, the California Legislature passed SB 1281 (CALI 2014) which required owners					
	Injection Summary	of production wells to report the volume and disposition (see codes) of produced					
	Reports (from 1977)	fluids from any well to DOGGR starting Q1 2015.					
0	Not Applicable						
1	Evaporation-Percolation	Sump (unlined) - Evaporation and Percolation (infiltration): Water is placed into an unlined					
		sump, allowed to percolate into the ground and/or evaporate into the atmosphere.					
2	Evaporation (lined sump)	Sump (lined) – Evaporation: Water is placed into a lined sump, open tank, or similar					
		container for evaporation into the atmosphere.					
3	Surface Water Body	Surface Water Discharge: Water is discharged into a surface body of water such as an					
		ocean, lake, pond, river, creek, aqueduct, canal, stream, or watercourse.					
4	Sewer System	Domestic Sewer System : Water is placed into a sewage disposal or treatment system,					
		which is generally operated by a municipality or consortium for domestic waste.					
5	Subsurface Injection	Subsurface Injection: Water is injected into the subsurface of the same oil field and					
		operator, from which it was produced.					
6	Other (i.e. turned over to	Other: Water is disposed of by another method, such as commercial disposal, industrial use,					
	commercial water disposal)						
7		Sale/Transfer – To other operator or oil field: Water is sold or transferred to another operator					
_		or oil field.					
8		Surface Discharge: Water is used on oil field land or surface for dust control, landscaping,					
		pasture augmentation, infiltration, evaporation, etc					
9		Operator's facilities within oil field: Water is used for operator's facilities within the oil field					
		(i.e., tankage, equipment operation, onsite storage, equipment/facilities cleaning and testing,					
10		etc)					
10		Well Stimulation Treatment : Water is used in a well stimulation treatment operation (i.e.,					
44		hydraulic fracturing, acid matrix, acid fracturing, etc)					
11		Sale/Transfer – Domestic Use: Water is used for agriculture, irrigation, water replenishment, water banking, livestock, etc					
12							
12		Drilling, well work, and well abandonments : Water is used to support well drilling, rework, and abandonment operations, for such things as well control fluid, drilling mud, cementing,					
		etc					

State Water Resources Control Board Geotracker

SB 1281 also required DOGGR to provide the State Water Resources Control Board (SWRCB) with an annual inventory of all unlined oil and gas field produced water ponds or sumps.

Screenshot of Lined and Unlined Produced Water Pond Facilities from the SWRCB Geotracker Graphical Interface

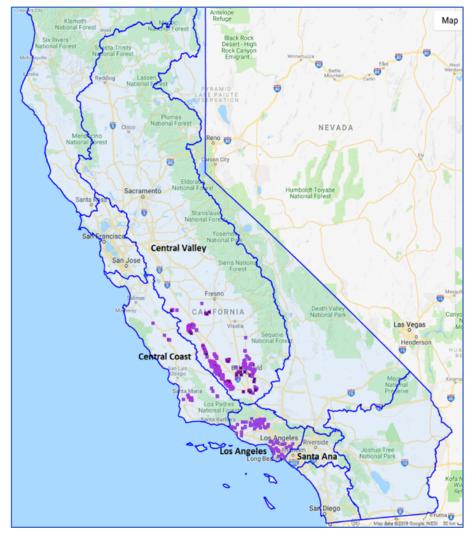
State Water Resources Control Board Geotracker

STATE WATER RESOURCES CONTROL BOARD									
Coov GeoTracker									
â	Tools		Reports	U	IST Case Closures	Information		•	×
PROJECT	SEARCH RESULTS								
	ERIA: WATERPONDS							DA	
706 RECORD	SFOUND	<u>SITE /</u>	<u>VIEW RE</u>	SULTS ON MAR	<u>EXP</u>	ORT TO EXCEL		PAC	GE 1 OF 15
	SITE / FACILITY NAME	FACILITY TYPE	CLEANUP STATUS	OIL FIELD	OIL FIELD OPERATOR	ADDRESS (OR PARTIAL ADDRESS)	CITY	ZIP	COUNTY
(REPORT) (MAP)	'NICHOLAS 4' WELL, VALLECITOS OIL FIELD	PRODUCED WATER PONDS	OPEN - SITE ASSESSMENT			NEW IDRIA ROAD	PANOCHE	95043	SAN BENITO
(REPORT) (MAP)	25 HILL PROPERTIES, INC., MIDWAY- SUNSET, SHELL LEASE	PONDS	OPEN - SITE ASSESSMENT	MIDWAY - SUNSET	25 HILL PROPERTIES, INC.	7026 DARNOCH WAY	WEST HILLS	91307	KERN
REPORT] [MAP]	ACL LEASE	PRODUCED WATER PONDS	HISTORIC	CANADA LARGA	HAMMOND CANYON #2	SULPHUR CANYON ROAD	VENTURA	93001	VENTURA
REPORT] (MAP)	AERA ENERGY, NORTH BELRIDGE DISPOSAL PONDS	PRODUCED WATER PONDS	INACTIVE - PERMITTED	BELRIDGE, NORTH	AERA ENERGY LLC	HIGHWAY 33	SOUTH OF LOST HILLS		KERN
(REPORT) (MAP)	ALISO CANYON OIL FIELD SUMP, POND, AND PIT ORDERS	PRODUCED WATER PONDS	OPEN - INACTIVE	ALISO CANYON	TERMO /CRIMSON /SO CAL GAS	0 PETER ROZE FOOTHILLS, UNNAMED ROAD	PORTER RANCH	91326	LOS ANGELES
REPORT] [MAP]	ANDERSON TF #1	PRODUCED WATER PONDS	HISTORIC	RUSSELL RANCH	E & B NATURAL RESOURCES MANAGEMENT CORPORATION	1848 PERKINS ROAD	NEW CUYAMA	93254	SANTA BARBARA
REPORT] [MAP]	ANDERSON TF #2	PRODUCED WATER PONDS	HISTORIC	RUSSELL RANCH	E & B NATURAL RESOURCES MANAGEMENT CORPORATION	1848 PERKINS ROAD	NEW CUYAMA	93254	SANTA BARBARA
REPORT] [MAP]	ANDERSON TF #3	PRODUCED WATER PONDS	HISTORIC	RUSSELL RANCH	E & B NATURAL RESOURCES MANAGEMENT CORPORATION	1848 PERKINS ROAD	NEW CUYAMA	93254	SANTA BARBARA
REPORT] [MAP]	ANT HILL, ALL LEASES	PRODUCED WATER PONDS	OPEN - INACTIVE			SEC 15,16&22,T29S,R29E,MDB&M	KERN COUNTY		KERN
REPORT] [MAP]	ANT HILL, SIEGFUS	PRODUCED WATER PONDS	OPEN - INACTIVE			SECTION 22, T29S, R29E, MDB&M	KERN COUNTY		KERN
REPORT] [MAP]	ANT HILL, SIEGFUS LEASE	PRODUCED WATER PONDS	OPEN - INACTIVE			NW1/4 NW1/4 S22,T29SR29E MDB&M	KERN COUNTY		KERN
REPORT] [MAP]	ANT HILL, SPA	PRODUCED WATER PONDS	OPEN - INACTIVE			NE1/4 SW1/4 S15 T29SR29E MDB&M	KERN COUNTY		KERN
REPORT] [MAP]	ANTELOPE HILLS OIL FIELD, HOPKINS A LEASE (AKA: EVAPORATION PONDS)	PRODUCED WATER PONDS	ACTIVE - PERMITTED	ANTELOPE HILLS	E&B NATURAL RESOURCES MANAGEMENT CORPORATION	ANTELOPE HILLS OIL FIELD	KERN COUNTY		KERN
REPORT] [MAP]	ANTELOPE HILLS OIL FIELD, HOPKINS A SOUTH LEASE	PRODUCED WATER PONDS	ACTIVE - PERMITTED	ANTELOPE HILLS	E&B NATURAL RESOURCES MANAGEMENT CORPORATION	ANTELOPE HILLS OIL FIELD	NORTH BELRIDGE		KERN
REPORT] [MAP]	ANTELOPE HILLS OIL FIELD, PHIPPEN LEASE	PRODUCED WATER PONDS	ACTIVE - PERMITTED	ANTELOPE HILLS	E&B NATURAL RESOURCES MANAGEMENT CORPORATION	ANTELOPE HILLS OIL FIELD	NORTH BELRIDGE		KERN
	ANTELOPE HILLS OIL FIELD,	PRODUCED WATER	ACTIVE - PERMITTED	ANTELOPE	E&B NATURAL RESOURCES	ANTELOPE HILLS OIL FIELD	NORTH		KFRN

Screenshot of Geotracker Database

Locations of Produced Water Ponds in California

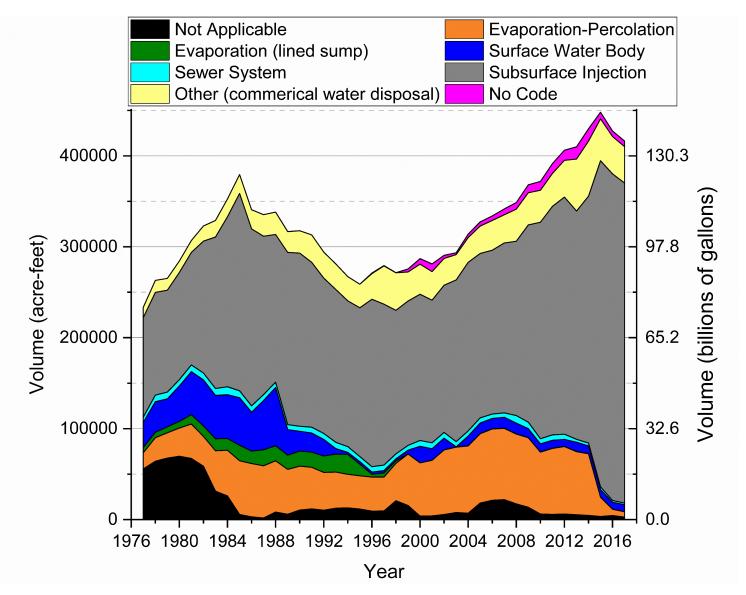
Regional Water Board	Active	Ponds	Inactive Ponds		
	Lined	Unlined	Lined	Unlined	
Central Coast	32	9	15	0	
Los Angeles	76	0	0	2	
Central Valley	31	530	25	507	
Santa Ana	0	2	0	0	
Total	139	541	40	509	


Data Source: SWRCB January 2019 Produced Water Pond Status Report (SWRCB 2019)

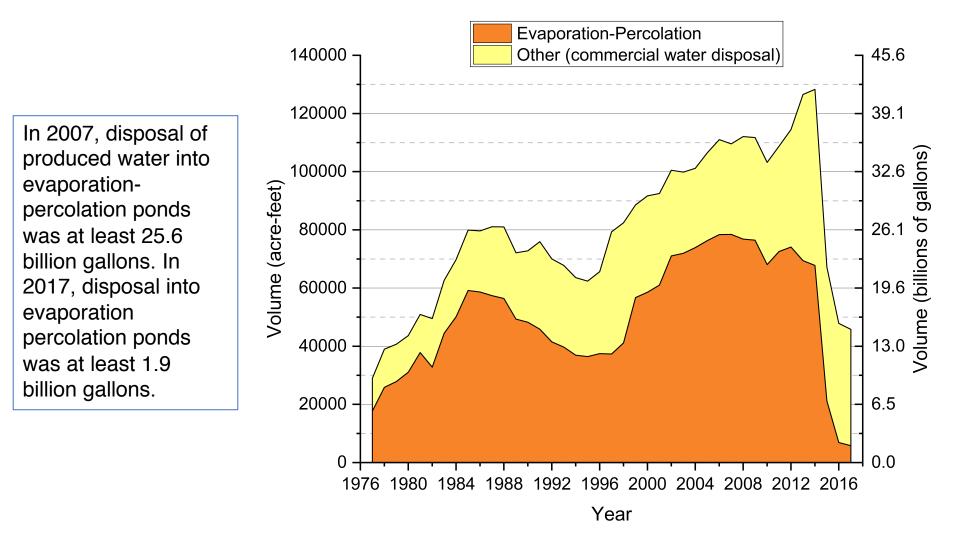
1,229 produced water ponds in California

1,050 of 1,229 produced water ponds (85%) are unlined

1037 of 1050 (99%) of unlined produced water ponds are in the Central Valley jurisdiction

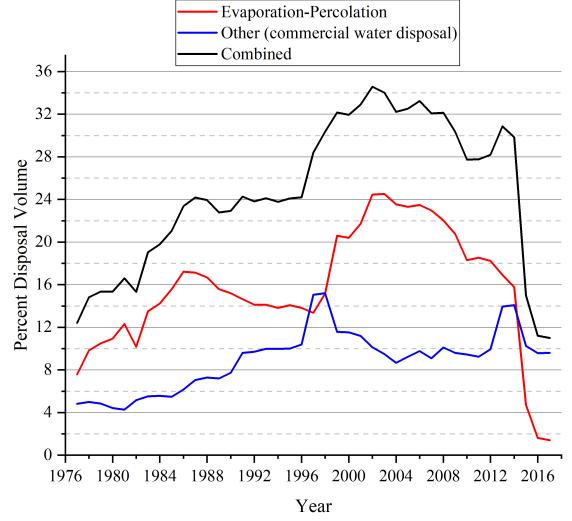

530 of 1050 (50%) of unlined produced water ponds in the Central Valley jurisdiction are active.

Geotracker Screenshot of produced water pond facilities by state water board jurisdiction


Produced Water Disposition Between 1977 to 2017

Data from DOGGR Well Production and Injection Summary Reports

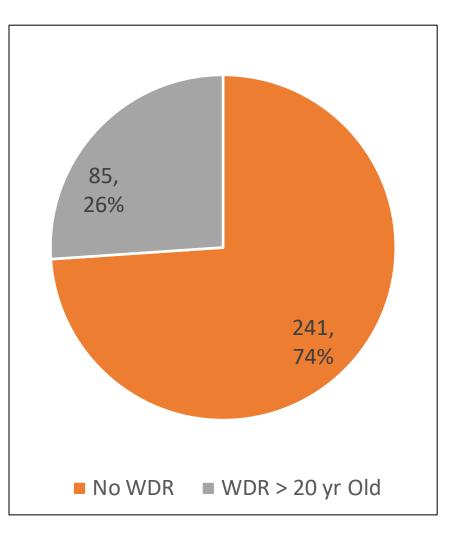
Evaporation-Percolation and "Other" Water Disposition Between 1977 to 2017



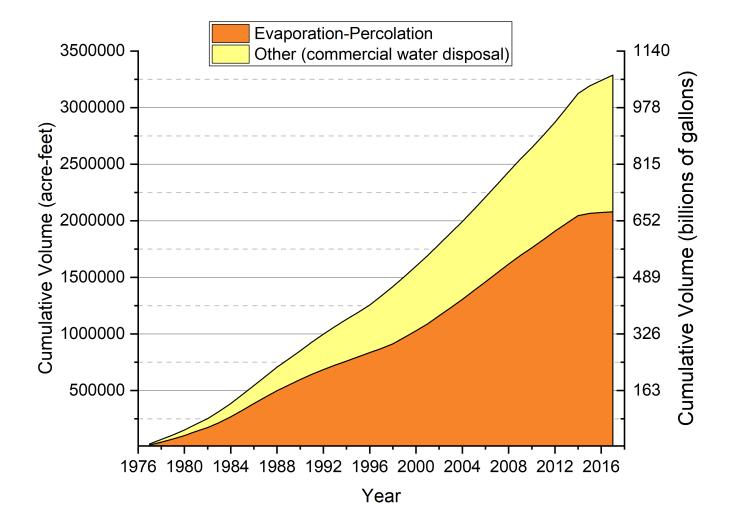
Data from DOGGR Well Production and Injection Summary Reports

Percent Disposal Volume of Produced Water Disposed in Evaporation-Percolation Ponds, "Other", and Combined

In 2003, disposal of produced water into evaporation-percolation ponds was at least 24.5% of produced water generated. In 2017, only 1.4% of produced water was reported as disposed in evaporationpercolation ponds.



Data Source: DOGGR Well Production and Injection Summary Reports


Beginning of Regulatory Action in 2014

In May 2014, the Central Valley Regional Water Quality Control Board (CVRWQCB) located 326 facilities with 1100 produced water ponds and evaluated Waste Discharge Requirements (WDRs).

Cumulative Disposal Volumes

Data Source: DOGGR Well Production and Injection Summary Reports

Groundwater Resources in the Tulare Basin of the San Joaquin Valley

Groundwater Resources in the Tulare Basin of the San Joaquin Valley

The Tulare Basin has 7 groundwater subbasins (locations of nearly all unlined ponds)

Salinity of Groundwater Determined in Part by:

- Origin of sediments (marine versus continental)
- Sources (stream, irrigation) and salinity of recharge water
- Evaporation and transpiration
- Geochemical processes such as ion exchange, mineral dissolution, and precipitation and associated depth and residence time
- Biological reactions that affect the oxidation/reduction state of groundwater

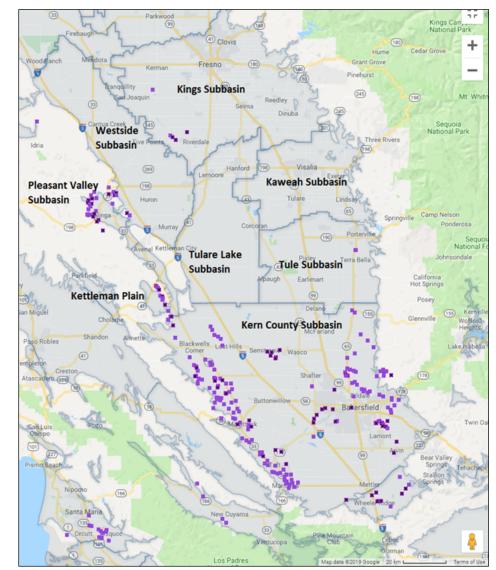


Figure from DiGiulio and Shonkoff (2019)

Hydrogeology of the Kern River Subbasin Area

- Nonmarine Kern River and Tulare Formations are the primary formations used for water supply.
- The Kern River Formation in the eastern portion contains sediment from the Sierra Nevada Mountains.
- Groundwater in the eastern portion of the Kern subbasin is primarily calcium bicarbonate waters in the shallow zones, increasing in sodium with depth.
- The Tulare Formation in the central and western portion contains sediments from Coast Range sources.
- Bicarbonate is replaced by sulfate and to a lesser degree by chloride in an east to west trend across the subbasin.
 West-side waters are primarily sodium sulfate to calcium-sodium sulfate type
- TDS increases from east to west.

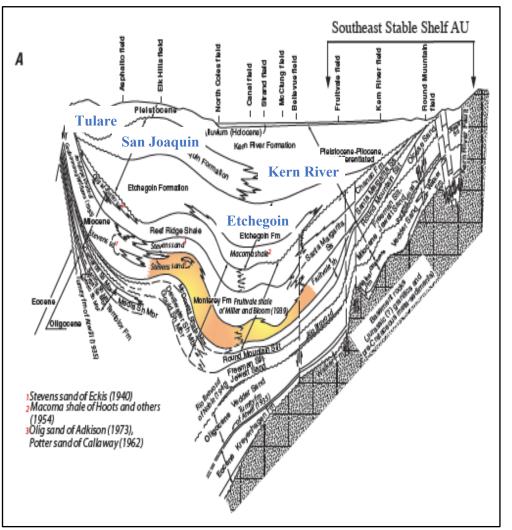
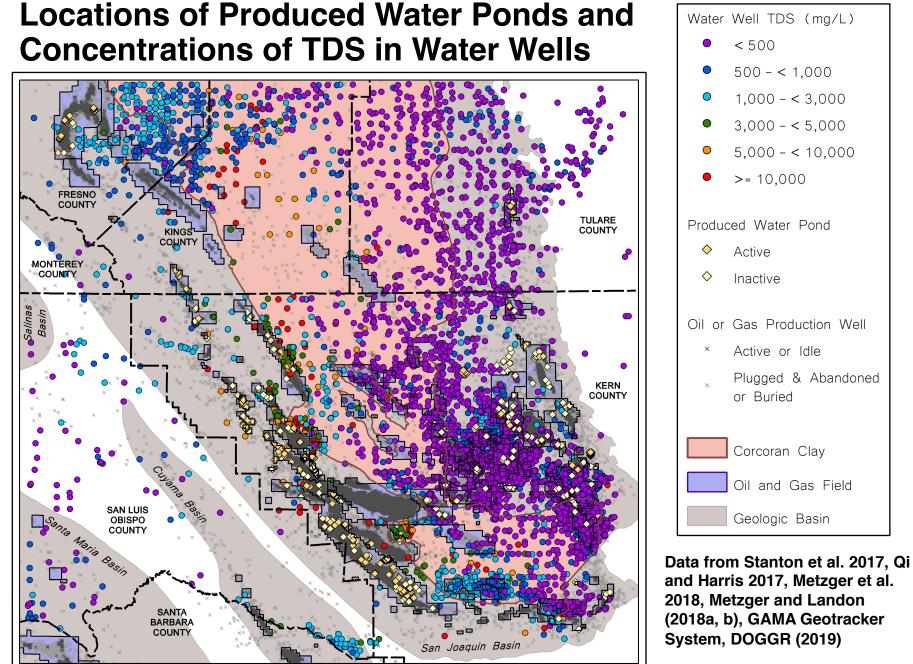



Figure from Gautier and Hosford Scheirer (2003)

Salinity Profiles in USGS Study Areas

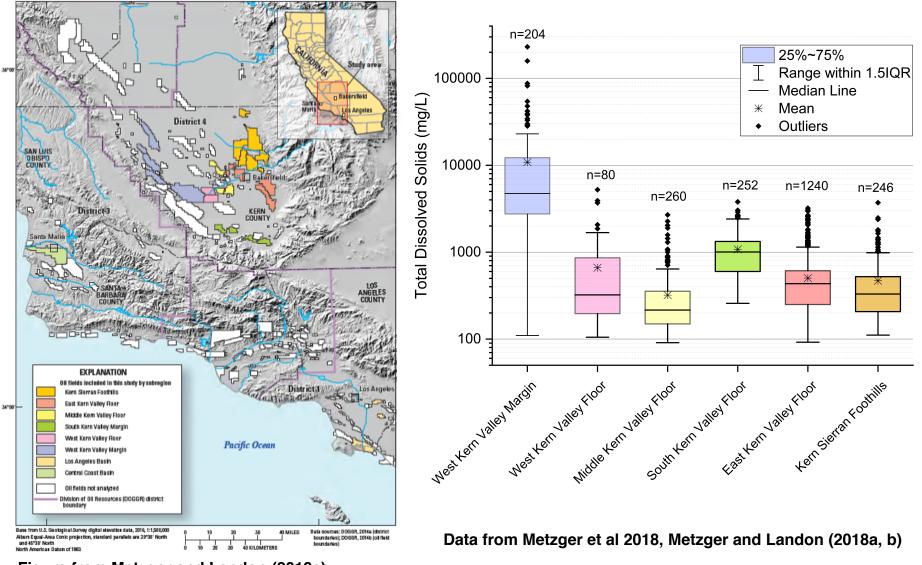
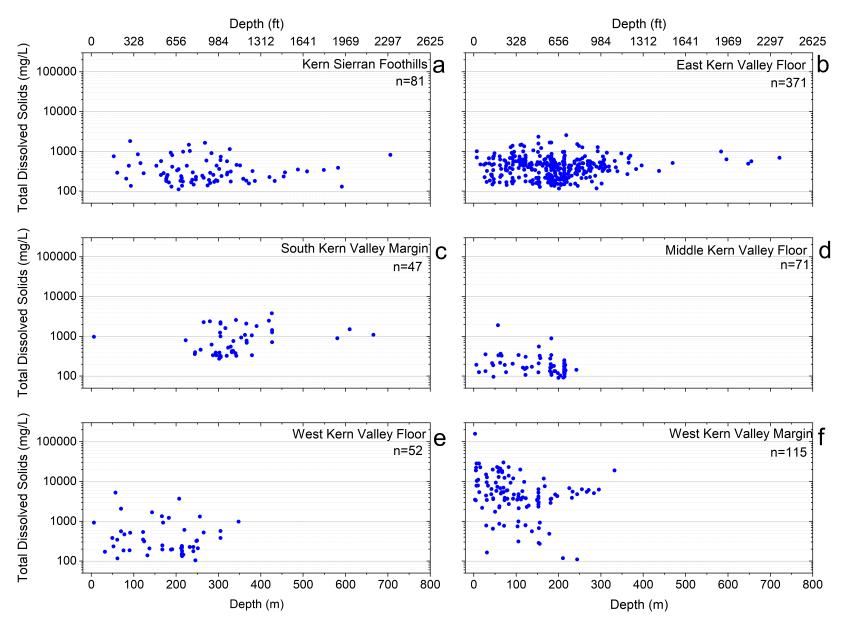
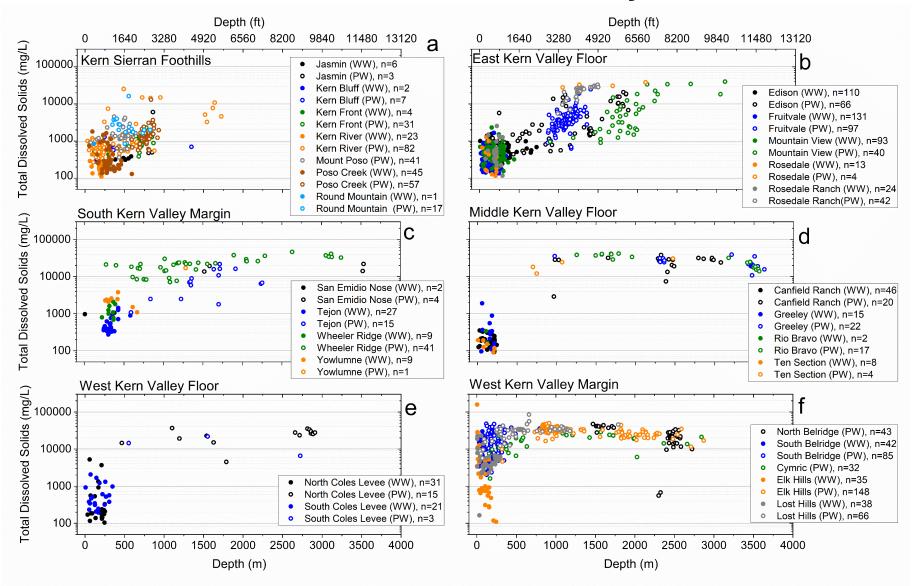
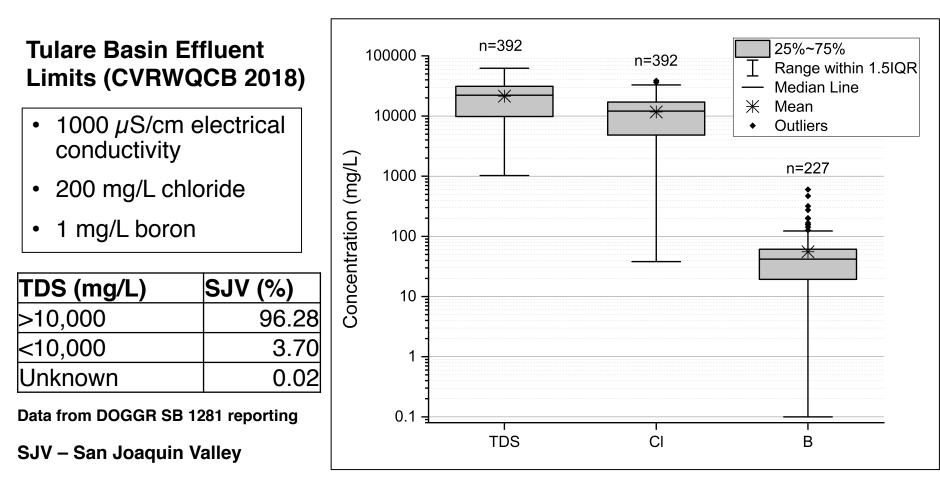



Figure from Metzger and Landon (2018a)



Salinity of Groundwater in Water Wells in Kern County

Data from Metzger et al 2018, Metzger and Landon (2018a, b)


Salinity of Groundwater in Water and Production Wells in Kern County

Data from Metzger et al 2018, Metzger and Landon (2018a, b)

Effluent Limits

Data from USGS Produced Water Database

Treatment

	SJV
Treatment	(%)
Deoiling	94.87
Deoiling + Other Treatment	0.25
No Method	2.06
Membrane Treatment	0.00003
Desalination	0
Untreated	2.82

Data reported to DOGGR under SB 1281

SJV – San Joaquin Valley

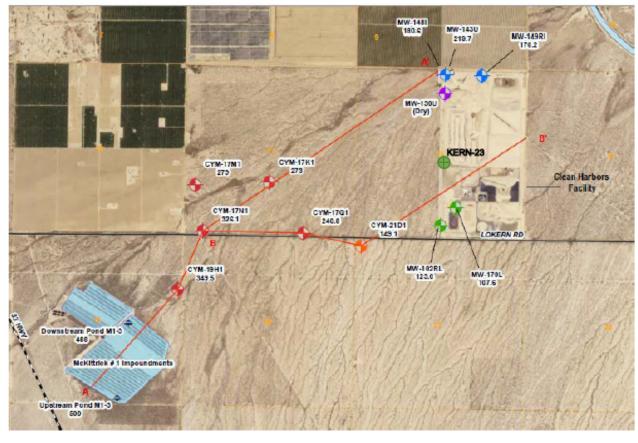
Only 0.25% of produced water discharged to unlined ponds is treated beyond deoiling.

Photo credit - Clean Water Action

Beneficial Use: Maximum Allowable TDS Levels for Protection of Groundwater Resources for Oil and Gas Development and Disposal of Produced Water in California

Maximum TDS (mg/L)	Applicability to O&G Industry	Enforceability	Overseeing Agencies
3,000 mg/L or EC < 5,000 μ S/cm for municipal water supply (MUN)	Land disposal, produced water ponds	States Sources of Drinking Water Policy (SWRCB Res No. 88-63 (SWRCB 2006). TDS and EC not defined for other beneficial use such as that used for agriculture (AGR).	SWRCB
Undefined	Conventional O&G Development	PRC § 1722.22 for casing requirements	DOGGR
10,000	Well stimulation	USDW, CA Water Code § 10783(k)(2)	DOGGR, SWRCB
10,000	UIC Program	UDSW, protected unless exempted, 40 C.F.R. 144.3	EPA, DOGGR
10,000	O&G development on federal or tribal land	Onshore Oil & Gas Order No. 2, 53 Federal Register 46798	BLM, DOGGR, SWRCB

A Case Study



Evaluation of Groundwater Contamination at the McKittrick 1 & 1-3 Facility

- The public record is extensive and easily accessible.
- The first Waste Discharge Requirement permit was issued in 1961 - an example of the long-term practice of disposal of saline (> 10,000 mg/L TDS) produced water into unlined produced water ponds.
- Discharge rates average 67,000 bbd (~ 1 billion gallons per year). Disposal volume over a 60-year operating period is estimated > 60 billion gallons.
- Complex hydrogeological and geochemical conditions that underlie and are in proximity to the facility are likely typical of numerous produced water ponds throughout the Tulare basin.
- Land utilized for agriculture with irrigation water supplied by water wells is located 457 m north of the McKittrick 1 & 1-3 Facility.

Location on Monitoring Wells at the McKittrick 1 & 1-3 Facility

Explanation

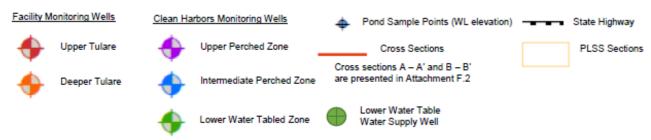


Figure from CVRWQCB (2019)

Perched and Regional Aquifer Conditions at the McKittrick 1 & 1-3 Facility

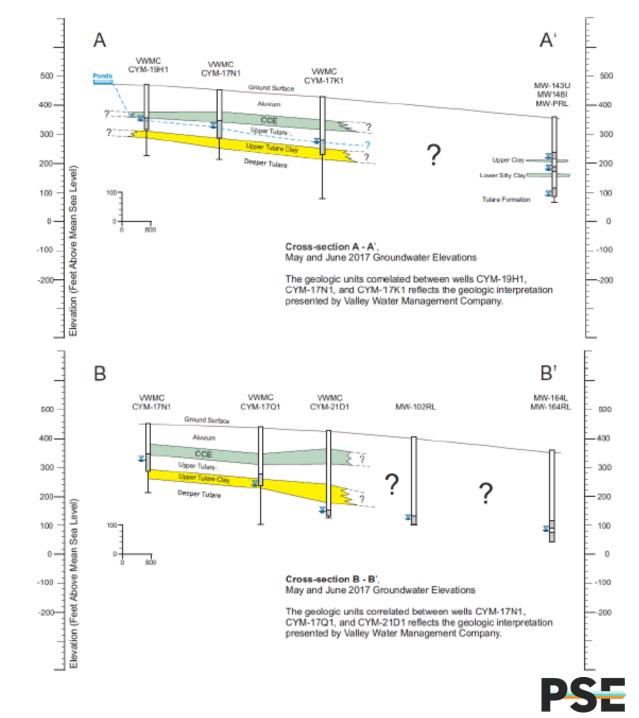
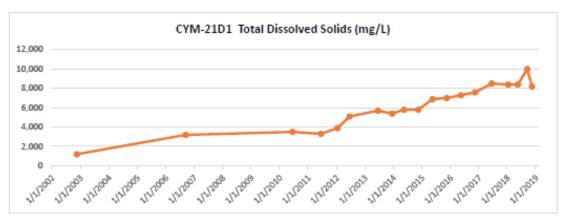
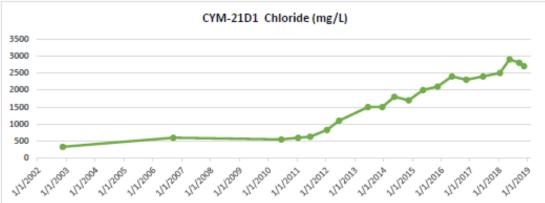
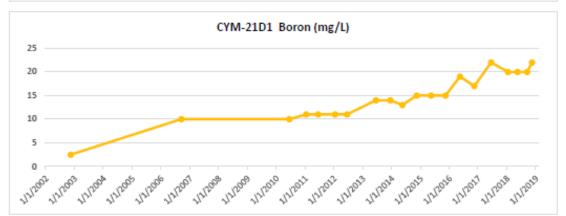
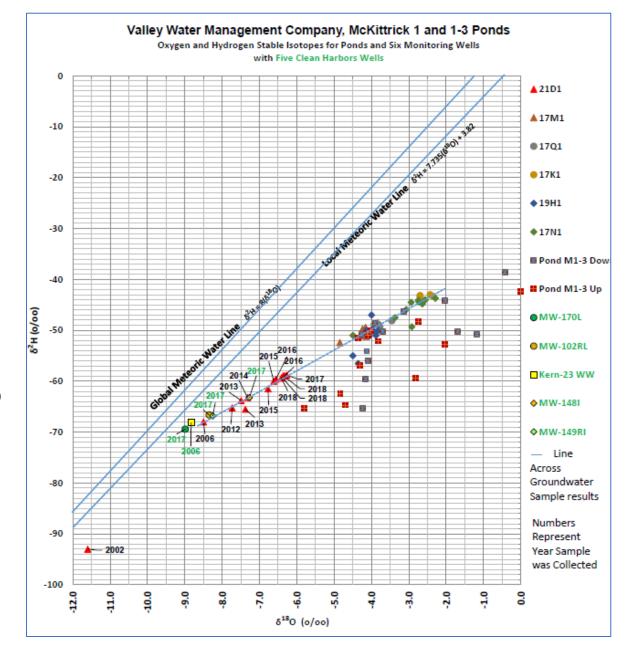




Figure from CVRWQCB (2019)

Levels of TDS, Chloride, and Boron in CYM-21D1 at the McKittrick 1 & 1-3 Facility




Figure from CVRWQCB (2019)

Water Isotope Values in Monitoring Well and Pond Samples at the McKittrick 1 & 1-3 Facility

$$\delta^{18}O_{sample}(\%) = \left(\frac{\binom{18}{0}\binom{16}{0}_{sample}}{\binom{18}{0}\binom{16}{0}_{VSMOW}} - 1\right)1000$$
$$\delta^{2}H_{sample}(\%) = \left(\frac{\binom{2}{0}\binom{1}{18}\binom{16}{0}_{VSMOW}}{\binom{2}{0}\binom{1}{18}\binom{16}{0}_{VSMOW}} - 1\right)1000$$

Vienna Standard Mean Ocean Water (VSMOW)

Conclusions

Jordon et al. (2015) Stringfellow et al. (2015) As stated by the California Council on Science & Technology and the Lawrence Berkeley National Laboratory in 2015:

- Unlined produced water ponds poses a risk to groundwater resources in California.
- If concentrations of salinity and constituents of concern cannot be reduced to levels protective of groundwater resources, this practice should be phased out.
- Groundwater investigations should be expanded to determine the extent of groundwater impact from past disposal.

References

Bean, R.T., Logan, J. 1983. Lower Westside water quality investigation, Kern County: California State Water Resources Control Board

California Central Valley Regional Water Quality Control Board. (CVRWQCB) 2019. Notice of Public Hearing. Cease and Desist Order for Valley Water Management Company, McKittrick 1 & 1-3 Facility, Kern County. <u>https://geotracker.waterboards.ca.gov/regulators/deliverable_documents/6581008017/vwmc_mck113_noph_all.pdf</u>

California Division of Oil, Gas, and Geothermal Resources (DOGGR). 2019. Water Use Dictionary, Data, Reports. <u>https://www.conservation.ca.gov/dog/SB%201281/Pages/SB_1281DataAndReports.aspx</u>

California Department of Water Resources (CDWR), 2003. California's Groundwater: California Department of Water Resources Bulletin 118. <u>http://www.water.ca.gov/pubs/groundwater/bulletin_118/california's_groundwater_bulletin_118_-</u> <u>update_2003_/bulletin118_entire.pdf</u>

California Legislative Information (CALI) 2014. Senate Bill (SB) 1281 Oil and gas production: water use: reporting. (2013-2014). http://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201320140SB1281

California State Water Resources Control Board (SWRCB). 2019. Produced Water Ponds Report. January 31, 2019. <u>https://www.waterboards.ca.gov/water_issues/programs/groundwater/sb4/docs/pwpondsreport_january2019.pdf</u>

DiGiulio D.C., Shonkoff S.B.C. 2019. Potential Impact to Groundwater Resources from Disposal of Produced Water into Unlined Produced Water Ponds in the San Joaquin Valley. An Assessment of Oil and Gas Water Cycle Reporting in California. Preliminary Evaluation of Data Collected Pursuant to California Senate Bill 1281, Phase II (in review)

Gautier D.L., Hosford Scheirer A. 2003. Chapter 13. Miocene Total Petroleum System – Southeast Stable Shelf Assessment Unit of the San Joaquin Basin Province. In Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California. U.S. Geological Survey Professional Paper 1713. <u>https://pubs.usgs.gov/pp/pp1713/13/pp1713_ch13.pdf</u>

Grinberg, A. 2014. In the Pits. Oil and Gas Wastewater Disposal into Open Unlined Pits and the Threat to California's Water and Air. Clean Water Action. November 2014. <u>https://www.cleanwateraction.org/sites/default/files/docs/publications/In%20the%20Pits.pdf</u>

Grinberg A. 2016. Still in the Pits. California is Still Failing to Protect Groundwater and Air Quality from Oil and Gas Wastewater and Air Quality from Oil and Gas Wastewater Disposal in Unlined and Open Air Pits. Clean Water Action, March 2016. <u>http://www.cleanwateraction.org/sites/default/files/docs/publications/Still%20In%20the%20Pits%20-%20March%202016.pdf</u>

References

Heberger M., Donnelly K. 2015. Oil, Food, and Water: Challenges and Opportunities for California Agriculture. Pacific Institute, Oakland, California. <u>https://pacinst.org/publication/oil-food-and-water-challenges-and-opportunities-for-california-agriculture/</u>

Jordan, P., Brandt, A., Ferrar, K., Feinstein, L., Phillips, S. 2015. A Case Study of the Potential Risks Associated with Hydraulic Fracturing in Existing Oil Fields in the San Joaquin Basin. In: Volume III. An Independent Scientific Assessment of Well Stimulation in California. The California Council on Science and Technology, Lawrence Berkeley National Laboratory, & Pacific Institute.

Metzger, L.F., & Landon, M.K. 2018a. Preliminary Groundwater Salinity Mapping Near Selected Oil Fields Using Historical Water-Sample Data, Central and Southern California. U.S. Geological Survey Scientific Investigations Report 2018-5082. <u>https://pubs.usgs.gov/sir/2018/5082/sir20185082_.pdf</u>

Metzger, L.F., & Landon, M.K. (2018b). Water and petroleum well data used for preliminary regional groundwater salinity mapping near selected oil fields in central and southern California. <u>https://www.sciencebase.gov/catalog/item/5a735aaee4b0a9a2e9e1429d</u>

Metzger, L.F., Davis, T.A., Peterson, M.F., Brilmyer, C.A, & Johnson, J.C. (2018). Water and Petroleum Well Data used for Preliminary Regional Groundwater Salinity Mapping Near Selected Oil Fields in Central and Southern California. U.S. Geological Survey Data Release. <u>https://doi.org/10.5066/F7RN373C</u>

Qi, S.L., & Harris, A.C. (2017). Geochemical Database for the Brackish Groundwater Assessment of the United States. U.S. Geological Survey Data Release. <u>https://doi.org/10.5066/F72F7KK1</u>

Stanton, J.S., Anning, D.W., Brown, C.J., Moore, R.B., McGuire, V.L., Qi, S.L., Harris, A.C., Dennehy, K.F., McMahon, P.B., Degnan, J.R., & Böhlke, J.K. (2017). Brackish groundwater in the United States. U.S. Geological Survey Professional Paper 1833. <u>https://doi.org/10.3133/pp1833</u>

Stringfellow, W.T., Cooley, H., Varadharajan, C., Heberger, M., Reagan, M.T., Domen, J.K., Sandelin, W., Camarillo, M.K., Jordan, P.D., Donnelly, K., Nicklisch, S.C.T., Hamdoun, A., & Houseworth, J.E. (2015). Impacts of Well Stimulation on Water Resources. In: Volume II, An Independent Scientific Assessment of Well Stimulation in California. The California Council on Science and Technology, Lawrence Berkeley National Laboratory, & Pacific Institute.

Thank You!

Dominic DiGiulio, Ph.D.

domdigiulio@psehealthyenergy.org

