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About PSE Healthy Energy

Generate, translate, and disseminate

Scientific research, analysis, synthesis and communication
to inform energy policy decisions

Primary focus areas 
• Clean energy transition
• Unconventional oil and 

gas  
• Health and environment 

Who we work with/for:

Academics, advocacy groups, regulators, policymakers, 
media, and the public



Is 100% renewable energy possible?

The quick answer: 

100% is hard, but we can get close

How do we get there?

1. Deploy what we’ve got

2. Test and scale mid-range 
technologies

3. R&D for end-game technologies   



Outline

1. Background: energy today

2. The clean energy transition

i. Renewable resources

ii. Demand & integration

3. Remaining technical hurdles

4. Moving forward

i. Next steps

ii. Health, environment, justice
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1. Where are we now?



Ten years of electricity: US

Data source: US EIA, 2015



Ten years of electricity: CA

Data source: US EIA, 2015



Ten years of electricity: IN

Data source: US EIA, 2015



Getting to 80-100% 
renewables

1. Switch power sector to 
renewables

2. Electrify current fuel users
i. Transportation
ii. Industry 

3. Change how we use electricity
i. Efficiency
ii. Flexible demand
iii. Use less: electricity, stuff
iv. Integrate across sectors:

transportation, industry, 
residential

We need 
to change 
where 
our energy 
comes from 
and how 
we use it



Do we have enough renewables?

Data source: Lopez, NREL, 2012



Integration challenges    

• Can’t dispatch wind or 
PV generation 

• Wind and solar 
generation output 
varies on both short 
and long timescales

• Location of resources 
doesn’t always match 
location of demand 
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Many ways of reaching 80-100%



Strategies for integration

• Efficiency

• Energy storage

• Transmission

• Transportation

• Integrate across technologies, regions

• Flexible, responsive electric grid (smart grid)



Efficiency
• Efficient appliances

• Efficient behavior
– Use less & consume less

• Efficiency in generation + grid
– Combined heat & power

– Lower peak demand

– Decentralized generation

• Electrification of industry, 
transport

Reduce 
“rejected 
energy” 

Example: Danish model assumes 50% drop 
in residential consumption [Mathiesen, 2014]



Energy storage

• Smoothes out intermittent renewables
• More efficient grid operation
• Grid support – power quality, deferred upgrades

Example: New Zealand model relies on 15% capacity 
matched in pumped hydro storage [Mason, 2010] 



Transmission upgrades

• Bring wind, solar in 
to meet urban 
demand

• Reduce variability by 
integrating over 
large regions

• Reduce curtailment

Example: US model estimates need for 100 
million MW-miles of transmission [Hand, 2012]



Transportation

• Electric vehicles

– Demand response

– Distributed storage

– Reduced air pollution

– Increased total power demand

• Expand alternatives: mass transit, walking, biking

• Other options:

– Hydrogen fuel cells

– Biofuels



Integrate across technologies, regions

• Mix resources to reduce variability
• Integrate over large regional areas (transmission)
• Over-generate and curtail 

Example: PJM model integrates wind over large area but 
curtails up to 50% with no storage [Budischak, 2013]



Grid flexibility

• Demand response

• Load shifting

• Smart appliances

• Real-time analysis

• Flexible EV storage 
and charging

• Smart grid 



3. Technical hurdles 

• Heavy-duty transport

– Ships

– Trucks

– Planes

• Intensive industry 
demands

• Big data challenges 

– Real-time analytics and 
optimization

– Privacy and security



4. Moving forward: near term

Scale up commercial technologies a.s.a.p.

– Renewables: 50% capacity added in 2014

– Efficiency

Stop building out fossil infrastructure
– Hard to retire a new power plant

– Locks into decades of emissions

Lots of headroom to add renewables in 
most regions before variability becomes an 
issue



Moving forward: mid-term

Large-scale pilots of non-
commercial technology
– Learn to operate, optimize

– Adapt markets, regulations

– Identify scalable technologies

Example: 1.325 GW energy storage 
pilot in CA

Ensure technologies are ready to 
integrate when we need them

Image source: PNNL



Moving forward: long-term

Ongoing R&D
– Heavy transportation, big data, heavy industry

– Inverters, optimization, storage, etc.

We can do a lot now, but better technologies will 
make it cheaper and easier

Ongoing R&D means when we get to 80%, we’ll 
know how to keep moving towards 100%



• Health benefits

• Environmental impacts and benefits

• Environmental justice

• Jobs and local economy

• Technology transfer & energy access

• Resiliency & energy security

Keeping the bigger picture in mind 



Thank You

Elena Krieger, Ph.D.

krieger@psehealthyenergy.org

www.psehealthyenergy.org
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http://www.psehealthyenergy.org
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