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1.0 Introduction
The impacts of climate change continue to grow across California, posing a threat to
populations statewide but particularly for historically disinvested populations for whom
climate impacts compound with ongoing cumulative socioeconomic and environmental
health stressors. For example, those who struggle to afford their electricity bills are less likely
to have access to air conditioning in the face of a heat wave and people who have asthma are
more vulnerable to the impacts of wildfire smoke. In recent years, resilience hubs have
emerged as a strategy to support communities both in the face of climate disasters and to
provide year-round support to increase everyday resilience.1 Resilience hubs can take many
forms but must be community-trusted and community-led sites that provide year-round
programming and services for the communities they serve. These services range from youth
services to resilience-building social support as well as emergency services, such as backup
power from solar+storage systems, in the case of climate-related or other disasters.

In this study, we seek to identify opportunities and barriers for deploying resilience hubs
across the state of California, as well as strategies to support their deployment in the
communities that may need themmost. This effort is a collaboration between the research
institute PSE Healthy Energy (PSE), and two community-based organizations, Asian Pacific
Environmental Network (APEN) and Communities for a Better Environment (CBE). The project
was supported by California Strategic Growth Council’s Climate Change Research Program
with funds from California Climate Investments. Under the project, PSE led a statewide
analysis of population vulnerability and candidate resilience hub sites while APEN and CBE
led case studies and on-the-ground deployment efforts in the Bay Areas’ Richmond and
Oakland neighborhoods, and in the Wilmington neighborhood in Los Angeles. These
combined efforts provide a top-down view of the state, including an assessment of
population vulnerabilities as well as solar+storage designs at nearly 20,000 sites; and a
bottom-up view of what it takes to actually design a resilience hub reflecting local needs and
priorities beyond solar+storage design. Together, these efforts aim to provide guidance at the
state, regional, and local levels to policymakers, community-based organizations,
government, and other actors to inform both individual hub design as well as broader policies
and programs to support resilience hub deployment.

This research aims to answer a series of questions across California to inform resilience hub
decision-making. From the top-down vantage point, we first construct a Climate Vulnerability
Index (CVI) to identify regions most in need of hubs. The CVI integrates information on
adaptive capacity and population sensitivity, including health, environmental, and
socioeconomic indicators. Next, we assess nearly 20,000 schools, community centers,
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libraries, and places of worship across the state as candidate resilience hub sites. For each
site, we identify critical electric loads and develop typical solar+storage designs both for
everyday use (e.g., to reduce electric utility payments) as well as the design changes
needed—and associated costs—to last throughmulti-day outages. Finally, we identify
relevant trends across the state, such as where additional incentives might be needed to scale
solar+storage and where climate vulnerability might be the highest. We then develop a series
of strategies to support hub design and deployment in communities facing different
combinations of socioeconomic, environmental, and climate challenges. We aggregate these
into policy recommendations, which are provided in our accompanying recommendations
document, Building Community Resilience Across California: A Statewide Analysis of Climate
Vulnerability and Resilience Hub Potential.

APEN and CBE have led a series of on-the-ground efforts in the communities where they work
to both support resilience hub development and enhance community resilience more
broadly. These include community surveys, trainings, toolkit development, and the
identification of resilience hub sites in Richmond, Oakland, and Wilmington. Currently, these
hubs are in various stages of development, ranging from initial scoping to full solar+storage
design and installation. These on-the-ground studies both inform the questions addressed by
and the data included in the top-down analysis as well elucidate the limitations that a
statewide zoom-out analysis has on capturing local-level information.

This technical document provides the methods used in our research on resilience hubs. This
information is integrated into numerous other blogs, policy reports, interactive data tools,
and other materials on PSE’s website. This centralized report provides the data sources and
analytical methods to support this array of materials and publications. While we will describe
some of the outreach activities performed by APEN and CBE and how these shaped some of
our analyses, we do not seek to comprehensively describe the broad scope of resilience work
conducted by these organizations and suggest looking at http://apen4ej.org and
https://www.cbecal.org for community toolkits, reports, infographics, and other materials.

This report is divided into the following sections:

● Section 2 outlines community engagement efforts and case studies in Richmond and
Wilmington, led by partners APEN and CBE;

● Section 3 details the development of the Climate Vulnerability Index;
● Section 4 describes the climate hazard data included in this work;
● Section 5 provides an overview of candidate resilience hub site selection and travel

distance analysis;
● Section 6 develops a method for identifying climate zones across California;
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● Section 7 explains the methods used to model solar+storage potential and costs at
candidate resilience hub sites;

● Section 8 provides the approach to estimating greenhouse gas and co-pollutant
emissions associated with solar+storage deployment;

● Section 9 describes a location-allocation model used to prioritize resilience hub
deployment based on climate vulnerability. The key take-aways from these analyses
are available in Building Community Resilience Across California: A Statewide Analysis of
Climate Vulnerability and Resilience Hub Potential.

2.0 Community Case Studies: Richmond andWilmington
The research collaboration between APEN, CBE, and PSE was structured as a Multiple
Principal Investigator project with a lead investigator from each organization to ensure
research design, goals, processes, and outputs reflected the priorities and approaches core to
each organization. As such, the collaboration agreed upon common principles and
commitments at the outset of the project. Each organization rotated through facilitator roles
for each inter-organizational meeting and shared progress, updates, data, findings, and
feedback on work from each group. As part of this collaboration, APEN and CBE provided
input on assumptions, data tool needs and designs, and other key inputs and outputs
developed by PSE. APEN and CBE sharedmethods and tools for community outreach in each
region with each other, and PSE provided tailored data analysis and trainings relevant to work
in each community, among other activities. The work conducted by APEN and CBE for this
specific project is part of a much broader suite of resilience-related work each group is leading
in their communities. Below, we provide an outline of some of these efforts but direct the
reader to each organization for the full scope of their work.

APEN’s work for this project focused primarily on community engagement alongside the
design and development of a resilience hub at the RYSE youth center in Richmond, California;
and in the latter half of the project on the design of a proposed resilience hub at the Lincoln
Recreation Center in Oakland’s Chinatown. Richmond is home to a largely low-income
community of color that has long been exposed to numerous sources of pollution, including
major freeways, a refinery, and a coal export terminal.2 APEN works closely with Asian
immigrant and refugee communities in Richmond, including in collaboration with the RYSE
Center, to support Richmond youth. In recent years, the community has faced increased heat,
smoke fromwildfires, and power outages due to public safety power shutoffs. The Lincoln
Recreational Center in Oakland has long been a trusted gathering place for Chinatown
residents, including many immigrant, elderly, and renter households, and the recent effort
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with the City of Oakland and other community organizations to redo the Center includes the
expansion of its role into a full resilience hub.

Throughout this project, APEN has conducted numerous workshops, trainings, tours,
advocacy training days, townhalls, and other resilience-related engagement and educational
efforts. These were particularly focused on work with youth at the RYSE Center. Efforts
focused on:

1. Community ground-truthing to find out what people identify as barriers to healthy
and resilient communities and where there are gaps in knowledge about what to
do in climate emergencies.

2. Community visioning to identify what communities want to develop as a place
where they feel they can gather safely and build trust.

3. Resilience infrastructure learning to understand how solar and storage works.
4. Scenario planning and prioritization for specific resilience hub sites. Surveys

guided the broader phases of this work, andmore tailored workshops guided the
rest. Among these activities, RYSE youth helped plan a Richmond Our Power
Coalition Townhall on resilience hubs, with dozens of community members in
attendance.

They also participated in virtual advocacy days educating decision-makers on the concepts of
resilience hubs and the importance of supporting environmental justice communities. Youth
are also deeply involved in the design of the hub and its governance. Early efforts included the
co-development of an outreach survey conducted by Richmond youth to identify needs and
priorities for the RYSE resilience hub, which reached 122 participants from ages 14-22 in 11
East Bay cities. The surveys identified primary disaster concerns (e.g., earthquakes, wildfires),
resources youth would like to see at a resilience hub (e.g., mental health support, Wi-Fi,
phone charging, food, personal protective equipment, supportive staff, activities), resources
in the case of emergency (e.g., backup power, first aid kits), training needs (e.g., emergency
response training); and other factors, such as feelings about safety, school, and community
strategies.

RYSE youth also helped RYSE and APEN identify needs and priorities for solar+storage design
at the site. PSE also supported APEN and RYSE in developing a request for proposals (RFP) for
solar+storage, including guiding documents on design trade-off considerations; a storage and
solar developer was identified and solar+storage installed on-site in 2023; this process has
faced long interconnection waits, and while the solar on one building has been connected,
the second is awaiting interconnection in spring 2024, and the timeline for the battery
interconnection is uncertain. APEN developed a curriculum and outreach strategy for APEN
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members in Oakland’s Chinatown to support the development of a solar+storage resilience
hub at the Lincoln Recreational Center. APEN also began developing a field-building guide for
resilience hubs for release in early 2024.

CBE has focused its work for this project in Wilmington, a largely low-income community of
color, exposed to pollution from the Port of Los Angeles, neighborhood oil drilling, refineries,
and significant heavy diesel trucking, among other sources. Following a similar approach to
APEN, but tailored to its specific community, CBE has conducted educational, outreach, and
training efforts in the Wilmington community throughout this project. Initial project efforts
also include a community survey to identify resilience hub needs, including demographics,
top community climate concerns, places people typically go in an emergency, and priority
resilience efforts. This last category included in-center resources (e.g., solar+storage, Wi-Fi) as
well as mutual aid in the community (e.g., food drives, resilience kits, box fan distribution)
(available in Appendix A). CBE identified two candidate resilience hub sites and supported the
ongoing development of resilience hubs at the Tzu Chi Clinic and the Senior Center in
Wilmington. These efforts includedmeasures such as identifying transportation needs, energy
needs, and programs and services, including through community visioning exercises. CBE has
developed a wide range of educational materials on resilience, including blogs, infographics,
an Instagram reel on how tomake a box fan air filter, blogs, and a Resilience Hub Toolkit.

These on-the-ground efforts from CBE and APEN have directly built resilience in Richmond,
Oakland, and Wilmington communities. The findings from these surveys and outreach efforts,
alongside direct feedback from APEN and CBE, were used by PSE to inform various modeling
inputs such as climate vulnerability indicators and candidate site identification alongside
outputs including the development of a Candidate Resilience Hubs Mapping Tool. APEN, CBE,
and PSE also conducted training workshops at the 2022 National Adaptation Forum and the
2023 California Adaptation Forum, and gathered input from these efforts to help shape
research inputs and deliverables.

3.0 Climate and Population Vulnerability Indicators
In order to identify areas in California where resilience hubs might be most needed by nearby
populations, we developed a Climate Vulnerability Index (CVI). Numerous methods currently
exist to identify vulnerable populations in California, but none fully encompassed indicators
we believed would be valuable to help identify priority regions for resilience hub deployment.
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To inform our approach to CVI development, we adopted the climate vulnerability definition
developed in 2017 by California’s Integrated Climate Adaptation and Resiliency Program
(ICARP) Technical Advisory Council:

“Climate vulnerability describes the degree to which natural, built, and human systems are at
risk of exposure to climate change impacts. Vulnerable communities experience heightened risk
and increased sensitivity to climate change and have less capacity and fewer resources to cope
with, adapt to, or recover from climate impacts. These disproportionate effects are caused by
physical (built and environmental), social, political, and/ or economic factor(s), which are
exacerbated by climate impacts. These factors include, but are not limited to, race, class, sexual
orientation and identification, national origin, and income inequality​(Climate Equity and

Vulnerable Communities, n.d.)​”3

Based on this definition, three core components characterize climate-vulnerable
communities: 1) increased sensitivity to climate change, 2) less capacity to cope, adapt, or
recover from climate impacts, and 3) heightened risk to climate-related hazards. We used
these three core components as the foundation to develop a Climate Vulnerability Framework
(CVF) (Figure 3.1) and, subsequently, the CVI. The CVF includes three domains that
encompass the core components of the climate vulnerability definition:

1. Population Sensitivity,which we defined as populations that, due to
physiological, medical, or working conditions, have an increased sensitivity to
climate stressors (e.g., people with asthma, cardiovascular diseases, people with
disabilities, children, elderly, outdoor workers, etc.) and that are already
overburden by environmental pollution (e.g., people living in areas with high levels
of air pollution, drinking water contamination, traffic-related pollution, etc.).

2. Adaptive Capacity,which we defined as the capacity of populations to withstand,
recover, and adapt to climate impacts. It encompasses Socioeconomic Capacity,
that is, the financial capital of communities; Social and Population Capacity, which
reflects on the capacity of communities to work together effectively and on the
value of human resources; and Infrastructure Climate Capacity, which refers to the
ability of a population’s built environment to withstand climate impacts.

3. Climate Risk,which is the likelihood a population will face climate hazards.
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Figure 3.1. Components of Climate Vulnerability. Climate Vulnerability is influenced by the
sensitivity of populations, their adaptive capacity, and their risk to face climate-related
hazards.

Using this framework, we estimated the CVI leveraging publicly-available data to identify
indicators that would capture information about Population Sensitivity and Adaptive
Capacity. Due to the vastness of climate-related events, limitations in climate data,
uncertainties of projected climate estimates, and an analytical objective to develop a flexible
CVI that can be used to assess population’s climate vulnerability to a broad array of climate
events, the CVI itself does not include data on climate risk (Figure 4.2). Excluding climate risk
data makes the CVI relevant to any extreme weather event or disaster, given that Population
Sensitivity and Adaptive Capacity indicators tend to overlap across different climate events.
We assess climate risks as part of their own sub-analysis in detail in Section 4 below.
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Figure 3.2. Climate Vulnerability Index Diagram. The CVI includes twomain domains that
align with the definition of climate vulnerability. Each domain is divided into subdomains,
which are then composed of various indicators.

The CVI consists of 39 indicators and is estimated at the census tract level. It includes all
CalEnviroScreen 4.0 (CES) indicators and 19 additional ones gathered from publicly-available
data sources (Table 3.1). CES was developed to identify communities facing cumulative
socioeconomic and environmental health burdens and histories of environmental injustice;4

therefore, the indicators included are likely to reflect various measures of population
sensitivity and some level of adaptive capacity, as described above. However, CES was not
specifically designed to identify climate vulnerable populations and as a result a number of
climate vulnerability indicators are excluded from the index. We added additional indicators
to try to better capture climate vulnerabilities—adaptive capacity—in particular. Two of the
additional indicators are related to healthcare infrastructure. We used hospital and urgent
care facility location data from Homeland Infrastructure Foundation-level data5 and census
block group centers of population from the 2010 Decennial Census6 to calculate the linear
distance to the closest hospital or urgent care facility.

We calculated the linear distance from the census block group centers of population to the
nearest hospital or urgent care facility. Then, we averaged the distances across all census
block groups within a census tract to get the census tract's average linear distance to the
closest hospital or urgent care facility. We used these averages as Infrastructure Climate
Capacity indicators. We also estimated an indicator to capture infrastructure capacity to cope
with extreme heat by multiplying census tract-level projected extreme heat days for
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2030-2050 (RCP 4.5) by the percentage of households without air conditioning (See Table 3.1
for information about data sources). Census tracts with a high number of projected extreme
heat days and a high percentage of households without air conditioning have high values for
this indicator. The additional 16 indicators included four Sensitive Populations Indicators and
12 Adaptive Capacity Indicators (see Table 3.1). Adding these indicators to the list of CES
indicators brings important additional climate-relevant information into the CVI.

We followed the CESmethodology7 with a fewmodifications to integrate all the indicators
into a single index. Most notably, to estimate the CVI, we incorporate a climate vulnerability
narrative; thus, the domains into which indicators are aggregated differ from those in CES.
Based on our CVF described above, in the CVI, we aggregated indicators into twomain
domains: Population Sensitivity and Adaptive Capacity. Population Sensitivity has two
subdomains: Sensitive Population Groups and Cumulative Environmental Burden. Adaptive
Capacity has three subdomains: Socioeconomic Capacity, Social and Population Capacity,
and Infrastructure Capacity (Figure 3.2). Additionally, in CES, several environmental exposure
indicators are given lower weights, but in CVI, all indicators are weighted equally as there is
not enough information available to decide the importance of each indicator. After assigning
indicators to subdomains, we ranked each indicator by percentile and then averaged the
rankings within subdomains to calculate a subdomain score. Then, we summed and scaled
the subdomain scores within each domain to obtain a domain score (Population Sensitivity
and Adaptive Capacity) ranging from 1-10 (following CESmethodology). Lastly, wemultiplied
the Population Sensitivity score by the Adaptive Capacity score to get the CVI, which ranges
from 1–100 (Figure 3.3), where higher values indicate higher climate vulnerability. We
estimated a CVI for each census tract. To more easily compare Census tracts, we estimated
percentile ranks of the CVI index. Census tract spatial geometries are from the 2010 Decennial
Census and the data spans multiple years (Table 3.1).
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Figure 3.3. Climate Vulnerability Index Methods Flow Chart. Indicators are classified into
subdomains, percentile ranked, and averaged to produce a subdomain value. The subdomain
values are scaled and integrated into a domain score. Lastly, the domain scores are multiplied
to generate the final CVI score.

There were a few census tracts with missing data. If a census tract was missing 50 percent or
more of the indicators in a subdomain, we assigned an NA to that census tract and didn’t
estimate a CVI for it. We calculated a CVI for 7,983 census tracts out of the 8,035 existing
census tracts in California based on the 2010 Decennial Census tracts divisions. The census
tracts with missing CVI were missing information for more than 50 percent of the
socioeconomic indicators; thus, we didn’t have enough data to calculate a reliable CVI. The
population for the census tracts with missing CVI ranged from 0 to 11,977, with a population
median of 27 and amean of 1,881. The census tract with the largest population andmissing
CVI covers one of the University of California Los Angeles campuses, and the census tract with
the second largest population (9,035) covers the California Substance Abuse Treatment
Facility and State Prison.
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Table 3.1. Cumulative Vulnerability Index Indicators

Indicator Definition Source Data Year(s)

Domain: Population Sensitivity
Sub-Domain 1: Sensitive Populations

Asthma
Age-adjusted rate of emergency department visits
for asthma per 10,000

CalEnviroScreen 4.0
2015–2017

average
Cardiovascular
diseases

Age-adjusted rate of emergency department visits
for acute myocardial infarction per 10,000

CalEnviroScreen 4.0
2015–2018

average
Low birth
weight

Percent population with low birth weight CalEnviroScreen 4.0
2009–2011

average
Population
with disabilities

Percent population with a disability American Community Survey 2015–2019

Population
under 5 years

Percent population less than 5 years American Community Survey 2015–2019

Population
above 64 years

Percent population older than 64 years American Community Survey 2015–2019

Outdoor
workers

Percent of population employed and aged >15 years
working outdoors

American Community Survey
via CCHVIz/CalBrace

2011–2015

Sub-Domain 2: Cumulative Environmental Burden

Clean up sites
Sum of weighted EnviroStor cleanup sites within
buffered distances to populated blocks of census
tracts

CalEnviroScreen 4.0 2021

Diesel PM2.5
Diesel PM emissions from on-road and non-road
sources

CalEnviroScreen 4.0 2016

PM2.5

Annual mean concentration of PM2.5 (weighted
average of measuredmonitor concentrations and
satellite observations, μg/m3), over three years

CalEnviroScreen 4.0 2015–2017

Ozone
Mean of summer months (May-October) of the daily
maximum 8-hour ozone concentration (ppm),
averaged over three years

CalEnviroScreen 4.0 2017–2019

Traffic

Sum of traffic volumes adjusted by road segment
length (vehicle-kilometers per hour) divided by total
road length (kilometers) within 150 meters of the
census tract

CalEnviroScreen 4.0 2017

Drinking Water
Drinking water contaminant index for selected
contaminants

CalEnviroScreen 4.0 2011–2019

Groundwater
Threats

Sum of weighted GeoTracker leaking underground
storage tank sites within buffered distances to
populated blocks of census tracts

CalEnviroScreen 4.0 2021

https://skylab.cdph.ca.gov/CCHVIz/
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Hazardous
Waste

Sum of weighted hazardous waste facilities and
large quantity generators within buffered distance
to populated census tracts’ blocks

CalEnviroScreen 4.0 2018–2022

Impaired Water
Bodies

Sum of number of pollutants across all impaired
water bodies within buffered distances to populated
blocks of census tracts

CalEnviroScreen 4.0 2018

Solid Waste
Sites

Sum of weighted solid waste sites and facilities CalEnviroScreen 4.0 As of July 2021

Toxic Release

Toxicity-weighted concentrations of modeled
chemical releases to air from facility emissions and
off-site incineration; includes releases fromMexican
facilities

CalEnviroScreen 4.0
2014–2016,
2017–2019

Lead

Percentage of households within a census tract with
likelihood of lead-based paint hazards from the age
of housing combined with the percentage of
households that are both low-income (household
income less than 80% of the county median family
income) and have children under 6 years old

CalEnviroScreen 4.0
2017, 2015–2019,
and 2013–2017

Pesticides

Total pounds of 132 selected active pesticide
ingredients (filtered for hazard and volatility) used
in production-agriculture per square mile, averaged
over three years

CalEnviroScreen 4.0 2017 to 2019

DOMAIN: ADAPTIVE CAPACITY

Sub-Domain 1: Socioeconomic Capacity

Housing
Burden

Percent of households in a census tract that are
both low income (making less than 80% of the HUD
Area Median Family Income) and severely burdened
by housing costs (paying greater than 50% of their
income to housing costs)

American Community Survey
via CalEnviroScreen 4.0

2013–2017

Education
Percent of population over 25 with less than a high
school education

American Community Survey
via CalEnviroScreen 4.0

2015–2019

Limited English
Proficiency

Percentage of limited English-speaking households American Community Survey 2015–2019

Population w/o
Health
Insurance

Percent population without health insurance (all
ages)

American Community Survey 2015–2019

Poverty
Percent of the population living below 200% of the
federal poverty level

American Community Survey
via CalEnviroScreen 4.0

2015–2019

Energy Burden Percent of household income spent on energy bills DOE LEADmap tool
Data download

1/31/23
No Vehicle
Access

Percent households without vehicle access American Community Survey 2015-2019

https://www.energy.gov/scep/slsc/lead-tool
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No Internet
Access

Percent households without internet access American Community Survey 2015-2019

Unemployment Percent unemployed out of the total in labor force American Community Survey 2015-2019

Sub-Domain 2: Social and Population Capacity
Voting
Indifference

Percent of registered voters who did NOT voted in
the 2020 general election

California Healthy Places
2020 general

elections
Census
Indifference

Percent of households who did NOT completed the
2020 decennial census

Decennial Census 2020

Crime Number of violent crimes per 1000 residents

Uniform crime reports from
US Federal Bureau of

Investigation via
CCHVIz/CalBrace

2013

Population
Decrease

Percent population change over time. Population
difference between 2010 Decennial Census and
2015-2019 American Community Survey divided by
2010 population times 100. Negative refers to
population decrease

American Community Survey
and Decennial Census

2010, 2016-2019

Health
Professional
Shortage

Health Professional Shortage Areas (HPSA)
designations for primary care. Scores range from
0-25; 0 means no shortage

Health Resources & Services
Administration

Designations from
2017-2020 (varies

by region)

Sub-Domain 3: Infrastructure Climate Capacity

Hospital
Accessibility

Closest linear distance to a hospital or urgent care
facility (miles)

Decennial Census block
groups population; health
facility locations from the
Homeland Infrastructure

Foundation-level data

Population 2010;
infrastructure

2012-2021

Impervious
Surfaces

Population-weighted percent of area covered by
impervious surfaces

National Land Cover
Database via

CCHVIz/CalBrace

2011, 2016 (NLCD)
& 2010 population

Canopy
Coverage

Population-weighted percent of area not covered by
tree canopy

National Land Cover
Database via

CCHVIz/CalBrace

2011, 2016 (NLCD)
& 2010 decennial

census

Urban Heat
Island

Sum of 182 day temperature differences (degree-hr)
between urban and rural reference. Available only
for urban areas

CalEPA via California Healthy
Places website

2015

Air
Conditioning
Access

Percent of households without air conditioning ⨉
number of projected extreme heat days 2030-2050
(RCP 4.5)

Residential Appliance
Saturation Survey via

CCHVIz/CalBrace; extreme
heat projections from

CalAdapt

2010 Decennial
Census

population; 2009
AC data

https://skylab.cdph.ca.gov/CCHVIz/
https://bhw.hrsa.gov/workforce-shortage-areas/shortage-designation#hpsas
https://bhw.hrsa.gov/workforce-shortage-areas/shortage-designation#hpsas
https://hifld-geoplatform.opendata.arcgis.com/
https://hifld-geoplatform.opendata.arcgis.com/
https://skylab.cdph.ca.gov/CCHVIz/
https://skylab.cdph.ca.gov/CCHVIz/
https://skylab.cdph.ca.gov/CCHVIz/
https://cal-adapt.org/


4.0 Climate Hazards
Climate-induced weather extremes are increasing the frequency and duration of power
outages, driving the need for local energy resilience in California.8,9 Millions of people have
already lost power during public safety power shutoffs (PSPS), where during drought and high
wind conditions a utility will turn off power to parts of the grid to lower the risk of their
infrastructure sparking a fire. The need for clean air and cooling is also often highest while
wildfires and extreme heat stress the electric grid, heightening the risk of power outages. For
this analysis, we focused on five climate and air quality hazards that indicated a need for
resilient energy, using data at the census-tract level to correspond to climate and population
vulnerabilities. These include PSPS, projected extreme heat days, ozone and PM2.5

nonattainment areas, wildfire-related PM2.5, and wildfire hazard zones.

While earthquakes are a significant concern in California, they are not a climate hazard and
this analysis did not include them in its evaluation of possible resilience hub locations.10, 11

Although resilience hubs can support disaster recovery efforts, this analysis focused on hubs
for outages and wrap-around services rather than disaster response.

4.1 Public Safety Power Shutoffs (PSPS)

Public Safety Power Shutoffs (PSPS) are proactive utility power outages to reduce the risk of
wildfire. While intentional, PSPS events can have significant impacts, particularly for those
reliant on electricity for health and safety. Because these outages are transparently reported,
we use PSPS data as a proxy for outage duration to inform solar+storage hub design. Other
resilience-oriented policies, such as the Self-Generation Incentive Program and the Microgrid
Incentive Program, also use past PSPS events as part of their funding eligibility criteria.

To estimate census-tract level impacts from PSPS events—which have historically been
reported by circuit rather than census tract—we used the California Public Utilities
Commission (CPUC) PSPS Rollup as our starting database.12 The Rollup is a spreadsheet with
the names of circuits that have been partially or fully de-energized during a PSPS event, their
outage and restoration times, and the numbers of customers impacted since 2013. These data
can be inconsistent and incomplete, so we verified against, and supplemented with,
information from utility Post Event Reports and electronic data requests, focusing on outages
with customer impacts. Each utility reports its data slightly differently and reporting
standards have changed over time. Because of this, we then standardized the data between
utilities, with a separate geospatial circuits dataset and over the course of reporting.
Additionally, we created a unique identifier for each circuit-level outage and assigned each to
a larger PSPS event, noting where circuits had had power cut and restored multiple times

17



during the same event. These data only exist for investor-owned utilities, meaning we do not
have coverage for places with municipal utilities such as Los Angeles and Sacramento.

We thenmatched PSPS-impacted circuits from the investor-owned utilities (PG&E, SCE, and
SDG&E) to their geospatial coordinates from each utility’s Integration Capacity Analysis map
and allocated outage impacts to census tracts by calculating what percentage of each circuit
was in each census tract. For example, if a circuit was 40 percent in census tract A, 60 percent
in census tract B, and a PSPS outage on that circuit impacted 100 customers, 40 customers
were allocated to tract A and 60 to tract B. Allocating customers this way assumes that
outages always impact the full circuit and that customers are evenly distributed along that
circuit. Early PSPS outages likely did impact full circuits, though for more recent outages,
utilities may have only de-energized the most at-risk segment of a given circuit. However, we
do not have data on the location of circuit segments. Customers are also not evenly
distributed across circuits, so some customers were likely allocated to the wrong census
tracts. However, we also lack census-tract specific customer allocations from utilities.
PacifiCorp does not publish geospatial circuit data, so we approximated the locations of their
circuits using data from Post Event Reports.

Non-investor-owned utilities are not required to report on PSPS events to the CPUC, so we
used a similar approach as described above to assign utilities to census tracts, which enabled
us to note which census tracts had not experienced any PSPS outages and which census tracts
were primarily served by utilities for which we had no data.

To calculate the average annual frequency of PSPS events, we found the total number of PSPS
events that a census tract had experienced and divided it by the number of years the utility
responsible for those outages had been reporting on PSPS events. This was necessary to
normalize the frequency of outages, because each utility started reporting PSPS in different
years. We also calculated the average customer-weighted outage duration for each census
tract, based on howmany customers in each tract were without power for various durations.

These data were presented alongside socio-economic and demographic data in the California
Public Safety Power Shutoff Interactive Map, a web-based and publicly-available mapping
tool specific to PSPS events.13 The annual frequency of outages in each census tract was also
used to represent PSPS outage risk in the candidate resilience hubmapping tool. For further
detail on the methods and data sources used to generate the PSPS dataset, see “Public Safety
Power Shutoff Maps: Methodology & Data Sources”14 online.
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4.2 Extreme Heat

The number of extreme heat days has increased in California since 1950 and heat events are
expected to becomemore frequent with climate change.15,16 Extreme heat can have severe
health consequences and strain the power grid, particularly in areas that are not prepared for
these higher temperatures. As typical temperatures vary across the state, the projected
extreme heat data used in our analyses is a measure of howmanymore extremely hot days an
area will have in the future. Specifically, it refers to the average projected annual number of
extreme heat days above the 98th percentile of historical maximum temperature for each
census tract.17 Projections are for the time period 2030-2050 and were estimated by averaging
the results of four different climate models (HadGEM2-ES, CNRM-CM5, CanESM2, and MIROC5)
to capture the range of possible projections. The models relied on historic temperature data
from 1961-1990 and the Representative Concentration Pathway (RCP) 4.5 scenario. The RCP
4.5 scenario is reflective of current clean energy transition efforts, as it assumes some
emissions reductions. We selected the 2030-2050 time period to evaluate near future
increases in temperature within which resilience hubs can both be built and provide
community benefits.

The projected extreme heat data was downloaded from CalAdapt.18 You can find more
information about the climate models and underlying data on the CalAdapt website and in
the Climate, Drought, and Sea Level Rise Scenarios for California’s Fourth Climate Change
Assessment report.17,19

4.3 Air Quality Nonattainment Areas

Fine particulate matter known as PM2.5 is emitted from gas and diesel cars, as well as wildfires
and other sources, and is associated with asthma attacks, bronchitis, increased hospital
admissions, and premature death.20,21 Ozone forms when volatile organic compounds (VOCs)
and nitrogen oxides (NOx)—emitted from cars, trucks, and other sources—interact with heat
and sunlight, and can cause health problems such as aggravating asthma andmaking
breathing difficult.22 Climate changemay increase concentrations of both pollutants, as
wildfires exacerbate existing PM2.5 levels and increasing temperatures increase ozone
formation. In the absence of air filtration systems at home, resilience hubs may provide the
best place for community members experiencing chronically poor air quality. PM2.5and ozone
nonattainment areas were drawn from the EPA nonattainment area classifications based on
2019-2020 data, with data downloaded from the EPA Green Book.23

Ozone nonattainment areas are census tracts that did not meet the eight-hour national air
quality standards for ozone concentrations of less than 0.07 ppm. These nonattainment areas
are also classified into six levels: Marginal (0.071 - 0.081 ppm), Moderate (0.081 - 0.093 ppm),
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Serious (0.093 - 0.105 ppm), Severe-15 (0.105 - 0.111 pm), Severe-17 (0.111 - 0.163 ppm), and
Extreme (0.163 ppm and above).24 For the Candidate Resilience Hub Mapping tool, tracts with
a Severe-15 and Severe-17 classifications were grouped together into a single ‘Severe’
designation and any tracts that were not in nonattainment areas were classified as ‘Meets
Standard.’ PM2.5nonattainment areas are census tracts that did not meet the 2020 annual
national air quality standards for PM2.5 concentrations of 12 micrograms per cubic meter
(μg/m3).25 At the time of this work, the EPA had proposed updating the primary, health-based
annual PM2.5standard to between 9.0 and 10.0 μg/m3, but the change had not yet beenmade.1

Nonattainment areas are also classified into “Moderate” and “Serious.” Moderate areas are
not in attainment when the rules are updated and Serious for areas unable to reach
attainment within six years.26,27 Additional classification of “Meets Standards” was added to
the Candidate Resilience Hubs Mapping Tool to indicate census tracts that are meeting the
PM2.5air quality standards. PM2.5nonattainment designations typically exclude so-called
“exceptional events,”28 including wildfires, so we include wildfire-related PM2.5as a separate
measurement.

4.4 Wildfire-Related PM2.5

As noted above, wildfires emit PM2.5and can worsen health impacts in areas with already-poor
air quality. Wildfire-related PM2.5concentrations for each census tract were provided by Dr.
Tarik Benmarhnia at Scripps Institution of Oceanography. These data were estimated using a
variety of machine learning techniques that integrated remote-sensing data, PM2.5

measurements from EPA Air Quality Systemmonitors, meteorological data, and other relevant
variables. For a description of these methods, see Aguilera et al. (2023).29

As the distribution of wildfires across California can change from year to year, for the
Candidate Resilience Hub Mapping tool we averaged all available data, which runs from 2006
to 2020.

4.5 Wildland Fire Hazard Severity Zones

Wildland Fire Hazard Severity Zones (FHSZ) illustrate fire hazard in areas where the California
Department of Forestry and Fire Protection (CAL FIRE) is primarily responsible for fire
prevention and suppression. Designated by CAL FIRE and classified as Moderate, High, or Very
High hazard, these zones are based on quantities of woody debris that could serve as fuel,
weather-related variables such as wind, and other relevant factors.30 For the Candidate
Resilience Hubs Mapping Tool we used the recently updated 2022 maps available from the
California Office of the State Fire Marshal.30

1 In February 2024, the EPA updated the primary annual PM2.5 standard to 9.0 μg/m3.
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The FHSZs only cover areas where CAL FIRE is responsible for fire services, known as State
Responsibility Areas. As a result, a significant portion of the Central Valley andmany city and
town centers are not included in fire hazard classifications.31 These data are also significantly
more granular than census tracts. Because of these factors, these data are not assigned to
census tracts and instead are presented as a separate layer in the Candidate Resilience Hub
Mapping tool.

5.0 Candidate Resilience Hub Site Identification
Resilience hubs strengthen human adaptive capacity year-round with community-driven
programs and resources, including information sharing, social support, and health services.
Additionally, resilience hubs serve as community resources during and after disasters by
providing support before, in, and during recovery from emergencies.1,32 Resilience hubs must
be built on trust, strong relationships, and communication during everyday operations in
order to strengthen communities year-round and improve response capacity during
emergencies.33,34

Numerous sites, ranging from libraries to multifamily apartment buildings, hold the potential
to serve as resilience hubs. However, certain sites are more conducive to serving
communities' needs than others due to factors such as capacity, proximity to disadvantaged
populations, and existing relationships with the surrounding communities. Moreover, not all
sites are capable of providing the full range of resilience services.35 Roode and Martinac,
(2020) in their case study of resilience hub design for Maui, Hawaii, argue that in addition to
providing year-round critical community services, a site should be in good structural
condition, located outside of natural hazard zones, and accessible by all members of the
community.36

For the purpose of this analysis, we faced data limitations regarding which sites might make
reasonable resilience hub candidates. Below we first outline the advantages and
disadvantages of different types of sites, then describe the methods we followed to identify
the buildings we included in our analysis and the methods for assessing the average travel
distances required for a community to reach a hub.

5.1 Advantages and Disadvantages of Different Site Types

We collected data for community centers (including libraries and clubs), schools, and places
of worship as potential resilience hub sites. Other potential locations were not considered in
this study, including government buildings, stadiums, andmulti-family housing. The excluded
sites face considerable staffing and programming challenges, and comprehensive statewide
datasets for them are lacking. If the sites analyzed here cannot provide sufficient space or
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energy for resilience hub services, either statewide or in particularly high-risk or vulnerable
communities, additional site categories may need to be considered. Ultimately, a viable
resilience hub should be chosen and led by the community, and local leaders can leverage
almost any trusted site to host the day-to-day and emergency services of a hub.1 As such, we
leave it to communities to select the location and develop the necessary programming.
Below, we discuss some of the advantages and disadvantages of each of the site types we
included in our analysis for the purpose of serving as resilience hubs.

Community centers are common candidates for resilience hubs, especially given their existing
local constituencies. Libraries already serve as public community centers, providing internet
access and assistance in emergency relief applications.35 Oakland, California is currently
piloting a resilience hub at the West Oakland Branch of the Oakland Public Library, focused on
heat and smoke relief.37 However, libraries andmany community centers lack showers and
bed space for long-term disaster housing.35

Places of worship also have long-standing relationships with existing communities and so are
included as potential candidate sites for resilience hubs. A Lawrence Berkeley National Lab
report suggests that rooftop solar+storage on places of worship can provide energy for
resilience hubs, and can also raise local awareness and acceptance of solar energy in
communities where adoption has lagged.38 Some places of worship, as exemplified by Glad
Tidings International in Hayward, California, have already initiated green energy solutions to
support their communities during power outages. Similarly, Stillmeadow Community
Fellowship in Baltimore Maryland has demonstrated the ability to work with local, state, and
federal governments to provide food, water, and supplies during disasters along with
additional services, like job training, to a broad constituency during everyday operations.39-41

Schools, from elementary through college, can provide different scales of services given the
wide range of sizes. However, schools pose challenges for managing student safety if
long-term events require ongoing resilience hub services and education functions
simultaneously.41 Elementary schools are deeply embedded in their local communities and
can offer resources that are often within walking distance of constituents. Secondary schools
offer more space but typically cover larger (not necessarily walkable) service areas.
Community colleges may be even farther from constituents but often have space that could
be reserved for resilience services during disasters. Most schools have showers, kitchens, and
large spaces like gyms that can be outfitted for emergency housing when required. Multiple
organizations are considering schools as hubs, but peer-reviewed analyses and reviews of
outcomes are lacking.42-44
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5.2 Site Identification and Footprint Estimates

We identified candidate resilience hub sites frommultiple databases and online sources. We
considered community centers (including libraries and clubs), schools, and places of worship
as potential sites for resilience hubs. Ultimately, we identified over 18,000 potential sites
across California. We obtained place of worship and community college data through Open
Street Maps (OSM) inquiries. We obtained community center data through OSM, the California
State Library website database,45 and the National Shelter System Facilities data set.46 We
found school data from the California State Schools data set47 and OSM. To our knowledge,
there are no complete, centralized, and publicly available databases of community centers
and houses of worship in California. We therefore leveraged OSM, an open-source dataset
detailing geospatial information around the world. The OSM database is freely available for
public use and includes crowd-sourced, digitized building footprints tagged with relevant
attributes such as building name and type. It is divided into several component datasets,
including places, buildings, roads, and land uses. To build a candidate site dataset, we relied
primarily on the building and land use datasets for Northern and Southern California, as
downloaded on August 24, 2021.

We queried the buildings and land use datasets by feature type and name. Buildings tagged as
relevant feature types, such as school, community center, church, temple, andmosque were
retained as potential sites. Land use types were similarly queried and the spatial intersection
of buildings falling within these land use categories was taken to capture buildings lacking the
appropriate tags. To further capture buildings that may not have received the appropriate
tags, we queried buildings and land uses by name. For example, buildings containing the
words “Elementary School” or “Youth Center” in their name were retained as potential sites.
This methodology was iteratively refined as nuances in the dataset requiring additional
processing were identified. For example, ground-mount solar panels and baseball dugouts on
school campuses were sometimes identified as buildings via these methods. Buildings within
above-ground parking lots were accordingly removed, as were buildings with a footprint of
less than 100 square feet. Additionally, duplicate buildings identified via more than one of the
above methods were removed from the dataset to avoid double counting their square
footage.

Building footprints are important to estimate the potential for rooftop solar at each site. For
school footprints that were not found and cleaned in the OSM database, we developed a
random forest regression model using cleaned school data, including population density of
school neighborhoods and the school enrollments to estimate the building’s footprints. We
stress that these estimates of rooftop area are only rough estimates and that other essential
features, such as the fraction of available space on the roof for solar, are not included.
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All spatial data analysis and processing were performed in either ArcGIS Pro or using Python
with the Geopandas package. Prior to processing, all data were projected into NAD83
California Teale Albers (US Ft). This projection was selected to facilitate statewide, area-based
calculations. Building footprints were spatially joined with utility service area spatial data to
assign the most probable electric utility from a subset of utilities under consideration.

5.3 Travel Distance Estimation

Resilience hubs most often serve the communities living nearby. As such, to quantify the
potential of resilience hubs to serve community needs and to identify areas with limited to no
access to existing hub infrastructure, we found it necessary to measure the driving distance
between the potential hub sites and neighborhoods.

While direct or “as the crow flies” distance is a much easier calculation, it overlooks real-world
physical challenges. For example, a hubmay be physically within less than amile from a
community. However, due to barriers such as highways or rivers, the true travel distance may
bemuch greater. These differences between direct and driving distance can be substantial for
studies at short distances. The ideal method would be to find the distance between each
home and each potential hub, however, this is not possible due to data and computational
limitations. Thus, we choose census block groups as our geospatial unit for neighborhoods.
Block groups are smaller than census tracts but larger than census blocks. We found tracts to
be too large to approximate a single point where people live, while census blocks were too
numerous to measure distances and perform calculations. Still, block groups can often cover
large areas, especially in rural areas, and their geographical centroid may be far fromwhere
people live or even in water. To minimize these errors, we used the population-weighted
centroid calculated from block-level population data to estimate a population center within
each block group fromwhich we could calculate the travel distance to the nearest hubs.

Once we identified the population centroids, we calculated the driving distance between each
hub and all the block groups within a reasonable distance. Calculation of the minimum
driving distance between hubs and block groups was performed using OSM road data in
Python using the freely available OSMnx and NetworkX packages. While driving timemay be a
more important consideration than distance, it is difficult to estimate because traffic data is
not freely available and changes throughout the day. Specifically, we calculated the driving
distance between each block group and the nearest 10 hubs and all hubs within a three-mile
direct distance of that block group’s population-weighted centroid. These two criteria
ensured each block group had hubs to choose from but not too many to add to computation
time. In dense urban areas, often 10 hubs could exist within just a single mile, so finding all
hubs within three miles ensured all reasonable hubs were included. In rural areas, often no
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hubs were found within three miles, so finding the nearest 10 ensuredmultiple choices were
available, even though they may be far away. To calculate the travel distance, we used the
nearest node on the OSM road network to both the block group centroid and the site’s
centroid.

6.0 Estimating Energy Load Profiles fromClimate and Building
Category
Accurate building simulations to develop solar+storage designs for a specific site require
hourly weather data, including temperature, humidity, and solar radiation; and detailed
building characteristics, including heating, ventilation, air conditioning systems, building
materials, and occupancy.48 Rather than perform detailed hardware and structural analysis of
20,000 sites, wemade simplifications and approximations. To generate load profiles for all
building categories, we built a regression model from hourly load profiles in example cities,
where EPRI or NREL datasets provide load profiles for building categories in these cities,
against hourly average temperature profiles in these cities. We then used this model to
generate load profiles for every potential resilience hub site based on its building categories
and the temperature profile from the closest weather station. This approach offers a
locally-specific load profile, built off of data frommore than 400 weather stations across
California. These steps are described below. Further details and discussion of these methods
will be published in a forthcoming peer-reviewed study from PSE Healthy Energy entitled
Modeling and design of solar+storage-powered community resilience hubs across California.

6.1 Inadequacy of Climate Zone Proxies

We use REopt, a tool developed by the National Renewable Energy Lab, to model
solar+storage for normal operations and outage scenarios. REopt is a techno-economic
decision support model designed to optimize behind-the-meter energy assets whose outputs
include optimal system design given input constraints and objectives, economics (system
cost, net present value), and environmental metrics (CO2and other air pollutant emissions).49

REopt includes built-in load profiles for various building categories, adjusted to representative
cities in each International Energy Conservation Code (IECC) climate zone. Similarly, the
Electric Power Research Institute (EPRI) has developed load profiles with data across multiple
representative cities for additional building categories.50 Wang et al. show that analyses based
on IECC climate zone or representative city load profiles inadequately account for climate
impacts on building energy, as the variability of temperature, humidity, solar radiation, and
wind vary widely within climate zones.51 Similarly, Huang & Gurney show that the variation in
energy use within climate zones can be larger than the variation between climate zones.48 In
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California in particular, climate zones fail to account for microclimates, but energy use data
can be used to infer microclimate zones.52

IECC breaks down geographic regions by climate zones ranging fromwarmest to coldest on a
1-8 scale and bymoisture regime (moist, dry, marine) on an A-C scale.53 California contains
IECC climate zones 2 through 6, as shown in Figure 6.1, with zone 2 corresponding to the hot,
dry region bordering Arizona and Mexico and zone 6 in the Sierra Mountains and Northern
California. Los Angeles is used to represent the climate zone 3B region within California, while
Las Vegas is used to represent the 3B region outside of California.48

Figure 6.1 Candidate Resilience Hub Sites in California. Hubs are coded to their
International Energy Conservation Code (IECC) Climate Zone.

Figure 6.2 illustrates the temperature variability within IECC Climate Regions. The figure gives
the average high temperature (°F) experienced in eight cities across five “dry” climate zones,
6B through 2B. The expected trend from 6B through 2B shifting from cooler to warmer holds
true, but starting in April, the differences within climate zones become as pronounced as the
differences between climate zones. From June through September, Las Vegas (3B, brown) has
high temperatures more similar to Phoenix (2B, red) than its climate zone partner, Fresno (3B,
brown). Similarly, in the summer months, Tucson (2B, red) tracks closer to Fresno (3B, brown)
than its climate zone partner, Phoenix (2B, red).

Baechler et al. note that energy consumption increases by more than 0.56 percent per °F (1
percent per °C) increase in temperature.53The difference between high temperatures in July
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and August in Flagstaff (green squares) and Boulder (green triangles) is greater than 5 °F,
indicating at least a 2.8 percent difference in energy consumption despite both cities being in
climate zone 5B. Accounting for differences within climate zones that may be as great or
greater than differences between climate zones demands a more precise measurement than
climate zones.

Figure 6.2. Daily Average High Temperatures (°F) for Example Cities. Data from the Global
Historical Climatology Network - Daily (GHCN-Daily).54

The California Energy Commission (CEC) attempts to address California’s microclimates and
the inadequacies of IECC climate zones by establishing 16 climate zones across California with
a set of standard climate data for each.55 The CEC zones are not subdivisions of IECC, and so
are not completely consistent with them. While the CEC zones provide more resolution in
some areas—addressing microclimates in the Los Angeles, San Diego, and San Francisco
metropolitan areas—they offer less resolution than the IECC in Northern California and the
Sierra Mountains. In addition, CEC climate zones are not available outside of California. While
we could merge IECC and CEC climate zones in California for more resolution than either one
alone, analyses incorporating these would not extend nationally or internationally.

6.2 A Local Temperature-Driven Energy Load Profile

We used local weather data to determine the temperature and weather-dependent
components of the example load profiles from REopt and EPRI andmultiple years of empirical
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data from a community college in San Mateo County. We adjusted energy load profiles based
on the differences in daily local weather data between each site and the example cities.
Example cities for each building category and climate zone are shown in Table 6.1. By
normalizing energy use profiles by local temperature, we easily adapt to gaps in the example
data and differences in example cities across the data sources.

For community colleges, we have actual energy load data collected from San Bruno,
California. While the lack of data for community colleges outside the temperate San Francisco
region presents a limitation, we develop temperature- and occupancy-based predictions of
energy use from other building category and extend the temperature-dependent energy use
from secondary schools (the nearest proxy) to estimate community college energy and power
estimates outside this temperate region.

Oktay et al. show that hourly outdoor temperature trends can be established using the daily
maximum andminimum temperatures.56 We compare a representative hourly temperature
profile from Lake Tahoe California57 with Oktay et al.’s56 Z scores and find that data from
California has a similar hourly profile to Oktay’s data from Turkey. We, therefore, use the same
technique to build hourly temperature profiles from the daily high and low temperatures from
the Global Historical Climatology Network - Daily (GHCN-Daily).58

Example city daily average weather statistics for temperature and humidity were collected
from GHCN-Daily by matching example cities to the nearest weather stations with at least 10
years of data and data at least as recent as 2020. To convert local temperature profiles to local
energy profiles, we first determine the relationship between temperature and energy for the
building categories in the example cities. Fan et al. (2018) show that building energy use can
bemodeled as a function of temperature, temperature squared, humidity, direct radiation,
occupancy, and lighting and equipment power.59 We follow the Fan et al., method and
describe below our process to estimate each of the required dependent variables.
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Table 6.1 Climate Zone Example Cities and Data Sources

IECC
Zone

Climate Zone Description City State Community
Center and
Place of
Worship

Primary and
Secondary
School

Community
College

1A Very Hot, Humid Miami FL EPRI REopt

2A Hot, Humid Houston TX EPRI REopt

2B Hot, Dry Phoenix AZ EPRI REopt

3A Warm, Humid Atlanta GA EPRI REopt

3B Warm, Dry Las Vegas NV EPRI REopt

3C Warm, Marine San Bruno CA Empirical2

San Francisco CA EPRI REopt

3X Warm, Dry, California Coast Los Angeles CA EPRI REopt

4A Mixed, Humid Baltimore MD EPRI REopt

4B Mixed, Dry Albuquerque NM REopt3

4C Mixed, Marine Medford OR EPRI

Seattle WA REopt

5A Cool, Humid Chicago IL EPRI REopt

5B Cool, Dry Boulder CO REopt

Flagstaff AZ EPRI

6A Cold, Humid Concord NH EPRI

Minneapolis MN REopt

6B Cold, Dry Helena MT EPRI REopt

7 Very Cold Duluth MN REopt

8 Subarctic Fairbanks AK REopt

Table 6.1. Climate Zone Example Cities and Data Sources. Climate Zones existing in
California are shown in bold.

6.2.1 Occupancy Dependence

To identify the occupancy and occupancy-driven components, we filtered the energy load
data, considering only when the outdoor temperature was less than 65°F, focusing on periods
when the load was generated by people rather than outdoor air temperature-driven cooling

3 No EPRI data examples for CC and W in this climate zone.

2 A community college in San Mateo County, empirical data.
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needs. We took into account differences in building use cases for different days of the week
and during holidays and school breaks. We determined that for different building categories,
occupancy-driven energy use patterns emerge, as shown in Figure 6.3. Only community
colleges demonstrated a difference in occupancy-driven power on Fridays. For all other
building categories, weekday patterns are consistent Monday through Friday. Place of worship
data came from churches, and as such, Sunday is the peak usage day; we differentiate
between Saturday and Sunday for this building category. For other building categories,
weekend occupancy is consistently low on both Saturday and Sunday. Other than places of
worship, weekdays have the highest occupancy-driven load, with clear occupancy and energy
intensity schedules indicated by the median power without cooling. Differences between
occupancy-driven load emerge on weekdays for all categories, and for Fridays for community
colleges and Sundays for places of worship. Of note, places of worships’ highest loads are
during the Christmas season, as indicated by Break being higher than Normal. We then take
the 95th percentile value across all hours of the day, day of week types, and occupancy types
(shown with the dashed line for each building category in Figure 6.3) and divide the
occupancy-based load by this number. We use the 95th percentile rather than the maximum
value to prevent outlier maximums from overly influencing the resulting fraction. Places of
worship provide the key example—if occupancy from Christmas day is used—then typical
occupancy becomes a tiny fraction of that particular holiday’s occupancy. Instead, we allow
Christmas Day (and other outliers) to have occupancy rates above 100 percent. We use the
result as a proxy for occupancy percent. This proxy takes into account both occupancy and
occupancy-driven load, as we have no way to separate out lighting or equipment loads.
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Figure 6.3. Trends in Demand. Hourly median demand (kW) when no cooling is required. The
black dashed line shows the 95th percentile of power across all hours, weekday
classifications, and occupancy types. Friday (F), Saturday (SA), Sunday (SU), weekday (WD),
and weekend (WE).

6.2.2 Temperature, Humidity, and Radiation Dependence

Temperature, humidity, and radiation data are available from GHCN-Daily, and occupancy and
occupancy-driven load available from this proxy, we can then build a regression model for
building load across all temperature regimes. We use GHCN-Daily averages, as average
radiation and humidity have very little hour-to-hour and day-to-day variation. Early
regressions allowed us to reject them as explanatory variables of building energy.
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6.2.3 Regression Against Occupancy and Temperature

In order to have regression variables consistent in scale, we convert temperature to a
normalized scale between zero and one, with zero corresponding to the lowest temperature
observed in the dataset and one corresponding to the highest. Occupancy is already scaled as
a percentage. Our analysis showed that a parsimonious model, using the same variables
across all building categories, gives power as a function of occupancy and temperature, with
explanatory variables being occupancy, occupancy interacting with temperature, and
temperature squared such that hourly power (P) can be estimated as:

P = CK.B+ CO.B*O + COT.B*O*T + COTT.B*O*T2 (Model 1)

where

P = Electric power

O = Occupancy percentage,

T = Temperature, as a percentage of the range between statewide observedminimum
andmaximum temperatures.

Cx.B= regression fitted coefficients by term (X) and building category (B) with

X in {

K = constant term,

O = Occupancy,

OT = Occupancy*Temperature,

OTT = Occupancy*Temperature*Temperature}

Model parameters and statistics are shown in Table 6.2. P-values for all regression terms are
less than 0.05. The highest P-value is for the constant term for colleges at 6E(-12). R-squared
are above 0.90 for all building categories except places of worship, with these coming in at
0.717.
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Table 6.2. Model Parameters for Regressions Against Occupancy and Temperature

Building Category Adjusted
R2

Constant
CK.C

Occupancy
CO.C

Occupancy,
Temperature

COT.C

Occupancy, T2

COTT.C

Community Center
(CC)

0.906 1.21E(-4) 9.14E(-3) -2.39E(-2) 2.15E(-2)

Community College
(Coll)

0.967 2.67E(-5) 7.81E(-3) -1.92E(-2) 1.62E(-2)

Primary School
(Pri)

0.942 -9.93E(-5) 6.94E(-3) -1.63E(-2) 1.61E(-2)

Secondary School
(Sec)

0.902 -6.61E(-5) 7.88E(-3) -2.25E(-2) 2.23E(-2)

Places of Worship
(W)

0.713 2.24E(-4) 8.37E(-3) -2.50E(-2) 2.16E(-2)

All 0.858 -1.00E(-4) 7.66E(-3) -1.95E(-2) 1.86E(-2)

Table 6.2. Model Parameters for Regressions Against Occupancy and Temperature.

6.3 Generating Energy Load Profiles for Each Site

Using regression Model 1, and the average hourly GHCN-Daily temperature profiles from the
weather stations in California we generate an average hourly load profile for each building
category. As this load profile is a function of average hourly temperature, it lacks the
stochasticity that existed in the original source data and in real-world data. As optimal and
feasible solar+storage sizes, especially storage size, will be in part driven by the need to meet
peak rather than average load, wemodify the load profile to include some realistic
randomness. This is accomplished by comparing the regression-predicted load profiles (Ppred)
to the original load profile (P), and determining the hourly percent difference between
modeled andmeasured data for each building category at each of the example sites as Pdeltapct

= (P-Ppred)/Ppred in each hour of the year. We then use Pdeltapctas a multiplier to adjust Ppred for
each site in the same IECC climate zone as the example site, such that Padj = (1+Ppred)*Pdeltapct.
This inserts the regression error back into the load profile for each weather station based on
the regression error for each building category in each climate zone. These load profiles are
then used to calculate the load at each site by converting them from a load per square foot of
floor space to a total building energy load by multiplying by the site area in square feet.
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Using the temperature and occupancy relationships developed from example cities, we
adjusted each building category’s load profile to local climate by calculating the power
intensity (kilowatts per square foot) for each building class based on weather data from the
nearest of the 400 weather stations across California. Note Community Centers tend to have
the highest energy use per square foot while Places of Worship have the lowest, except on
Sunday mornings. Community Colleges tend to have the latest evening operations, except on
Fridays, when they appear to have fewer afternoon and evening classes and events.

Figure 6.4 Example Load Profiles. Example load profiles for each building category, example
week. Load profiles show the average power density (kW per square foot) used in each
building category during each hour of the day for a representative week in September in
Bakersfield, California. Buildings have different energy requirements during different times of
year, so load profiles were created for eachmonth, adjusted for the building’s local climate at
that time of year.

6.4 Power and Energy Per Person

To develop a per-person energy and power estimate consistent with location and season, we
used the load profiles developed above combined with school enrollment data to determine
the average energy per person in eachmonth, consistent with the temperature profiles from
each of the weather stations used above.
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We used schools as the source data because the schools data set had occupancy information.
We calculated the average square footage per student across the state, and then used the load
profiles to obtain the average energy per day per student. We used this as a proxy for per
person energy requirements for everyday operations at the school. While not a perfect proxy
for resilience missions, this does at least provide an estimate for plug, lighting, and heating
and cooling loads per person.

7.0 Solar+Storage Potential for Everyday and Resilience
Operations
After estimating energy requirements and designs for solar+storage for the candidate
resilience hubs, wemodel the economic costs, benefits, and the greenhouse gas emission
reductions of outfitting candidate sites across California with solar+storage optimized for
everyday operations. We then identify design modifications and additional costs required for
resilient energy production and storage to support critical loads through a range of outage
scenarios. Finally, we explore the impact of regional variation in solar irradiance, temperature
profiles, and utility rates on design requirements; and how utility rate design–including
Time-of-Use (TOU) rates, demand charges, and net-metering rates–impacts the financing
requirements for the sites.

7.1. Resilient Energy Analysis with REopt

REopt has been demonstrated as a useful tool for evaluating off-grid and on-grid resilience for
hospitals, clinics, offices, public buildings, and critical facilities.60–64 We are not aware of peer-
reviewed research on solar+storage systems designed for resilience hubs using REopt or
another tool. The closest work we find is our own work toward energy design for resilience
hubs.65

REopt does not have a built-in value of resilience, but does include a method to calculate the
cost of a lack of resilience by calculating cost of unmet load. The dollar value to put on unmet
load, or the value of resilience (VoR), is a field of ongoing research, with estimates that range
over three orders of magnitude, from less than $1/kWh unserved to more than $60/kWh in
residential applications andmore than $400/kWh in industrial applications.66,67 Resilience hub
critical loads may have even higher value, given that some of these loads may be for storing
expensive, life-saving medicines, powering medical devices, and providing clean, cool air for
people whomight otherwise die in heat waves or smoke events. Rather than put a dollar
value on these benefits, this analysis calculates the additional capital costs required to meet
certain resilience levels (duration of outage and percent of normal load served) and the
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economic value provided in normal operations from systems designed to meet those
resilience constraints.

For each potential site identified, we determined the optimal solar+storage designs for
everyday operation of these sites and calculated the additional solar+storage that might be
necessary for various needs during outage scenarios. The economics of everyday operations
and resilience operations were modeled using the U.S. National Renewable Energy REopt
tool. REopt also provides greenhouse gas and pollution emission reduction estimates, as
described in Section 8 below. We detail the site inputs necessary in Section 7.2, andmethods
for modeling for economic operations in Section 7.3, for resilience operations in Section 7.4.

7.2 Site Identification and Characteristics

Tomodel the economic and resilience potential for these sites, we used the input data shown
in Table 7.1, some of which is directly available from the sources listed above (e.g., location
by latitude and longitude). Methods of estimation for the remaining input data follow.

Table 7.1: Input Data Modeling Economics and Resilience of Candidate Site

Data Element Supporting Data Element

Location Latitude, longitude

Load Profile Building category

Building size (footprint and number of floors)

Local climate (daily and hourly temperature profiles)

Utility Costs Utility (utility service area)

Utility rate (building maximum load)

Outage Scenario Outage duration

Critical load profile

Table 7.1. Input Data Modeling Economics and Resilience of Candidate Site.
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7.2.1 Load Profiles

Section 6 explained how power and energy density load profiles were developed consistent
with building category and local climate. To convert the energy intensity per square foot into
a building energy load profile, we needed building area. We calculated the roof area using
OSM building footprints and estimated building floor area from roof area to account for
multi-floor buildings. For this, we sampled 200 schools (124 primary and 76 secondary) and
50 community centers from the combined building data set, and estimated the number of
floors for each sample building using Google Street View imagery. We then averaged by
building class and locale based on the National Center for Education Statistics locale
classification.68Significant differences were observed for community centers, primary schools,
and secondary schools based on whether or not their location was in a city (i.e., suburban,
town, or rural) (Table 7.2). Buildings that were not found in OSMwere assigned the mean
building area from that building category.

Table 7.2: Average Number of Floors for Each Building Class

Building Category Supporting Data
Element

Average Number of Floors (Not in a City)

Community Center 1.2 1.0

Community College 1.0 1.0

Primary School 1.3 1.0

Secondary School 1.4 1.2

Place of Worship 1.0 1.0

Table 7.2: Average Number of Floors for Each Building Class

7.2.2 Utility Costs

Utility rates impact solar+storage adoption. Higher grid electricity prices and higher payback
prices from net metering rules (the price paid by the utility for distributed solar sent back to
the grid instead of used on-site) shorten the payback period for solar installations. Battery
adoption increases with higher charges for peak power use, sometimes called capacity or
demand charges, especially when those charges are greater than $15/kW at 2017 battery
storage costs. Decreased storage costs have also increased adoption of batteries for peak
power shaving.69 In addition to high peak power charges, high energy costs (especially greater
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than $0.40/kWh) combined with low solar sell-back prices during daylight hours (especially
below $0.10/kWh) can incentivize battery adoption.70 We also expect that highly differentiated
TOU rates, with evening prices higher than daytime prices and daytime sell-back rates, will
incentivize battery adoption. To evaluate the economic value of solar+storage, electric utility
rates must, therefore, be included in the analysis.

There are more than 40 electric utilities in California with different rates, rate structures, and
net metering rules. These range from large investor-owned utilities, such as Pacific Gas &
Electric Company (PG&E) with more than half a million commercial customers, to public
utilities such as the City of Shasta Lake that serve fewer than five thousand commercial
customers. The five largest utilities serve 90 percent of the customers in California, while no
other single utility provider accounts for more than one percent of utility customers.71 We
include the five largest utilities and five additional utilities in our analysis to ensure statewide
representation, coverage of urban and rural communities, and coverage of disadvantaged
communities. Table 7.3 lists the utilities selected for modeling. Each of the five small utilities
selected was chosen because it serves customers in census tracts ranking in the 90th-100th
percentile of disadvantaged communities, as noted by California’s environmental justice
screening tool, CalEnviroScreen 4.0.7
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Table 7.3: California Utilities Selected for Modeling

Utility Name Utility
Abbreviation

Percentage of California
Customers

Pacific Gas & Electric Co. PG&E 33

Southern California Edison Co. SCE 31

San Diego Gas & Electric Co. SDG&E 9

Sacramento Municipal Utility
District

SMUD 9

Los Angeles Department of Water &
Power

LADWP 9

Imperial Irrigation District IID <1

Modesto Irrigation District MID <1

City of Anaheim, California (Utility
Company)

COAPUD <1

City of Riverside, California (Utility
Company)

COR <1

Turlock Irrigation District TID <1

Total ~95

Table 7.3. California Utilities Selected for Modeling.

We identified specific rates in each utilities’ service area from the International Utility Rate
Database.72 In each region, we selected active or most recently available commercial rates
covering a range of power service levels. Where TOU rates were available, we used these. In
regions where TOUs were not available, rates with demand charges were selected. Appendix B
summarizes the selected utility rates in each utility service area.

7.3 Economics for Everyday Operations

To explore the economically optimal solar+storage designs for everyday operations and
various outage scenarios, wemodeled the candidate buildings in REopt. In addition to the site
characteristics (load profiles, roof space available, utility rates) outlined above, some
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additional key inputs for economic analysis include solar and battery costs, rebates and tax
incentives, and net metering rules.

We constrained this study to roof-top solar installations. Future work will add on-parcel
off-roof potential (e.g., parking lots) and off-parcel (e.g., community microgrid) potential, and
we discuss where such expansion might be most valuable in the discussion section.

7.3.1 Installation and Maintenance Costs and Incentives

While solar and battery installation costs vary (generally decreasing over time and with
installation size), we use constant installed costs with REopt defaults: solar PV costs
$1,592/kWwith annual maintenance costs of $17/kW; batteries cost $775/kW and $388/kWh
for initial installation, with replacement costs of $440/kW and 220/kWh every ten years. In
addition, Inflation Reduction Act tax credits for solar and battery are 30 percent (0.3). As they
are now applicable to nonprofits, we used this fraction for all sites.

7.3.2 Net Metering Rules

We conduct our baseline site analysis under the California Public Utility Commission's (CPUC)
2023 net billing regime (NEM 3.0) but compare outcomes to the previous regime (NEM 2.0).73

NEM 2.0 featured full retail price net metering, where the price of energy supplied to the grid
was equal to the price of purchasing energy from the grid. NEM 3.0 reduces the price paid to
distributed generators to a rate that reflects the value of that energy to the grid at the time of
export. The value will usually be lower than the retail rate. The change was made to reduce
cost shifting from those with solar to those without solar.73 The sell-back price for electricity
exports under the new net billing tariff will vary based on the utility value of energy at the
time of export, with seasonal, daily, and even hourly fluctuation. To put a lower bound on the
possible value of exports, we set the price to zero. The as-yet-undefined and likely volatile
sell-back prices pose a significant challenge for solar designers; this analytical method
provides a conservative estimate of the impacts on solar and storage sizing under this new net
billing regime.

7.3.3 Discount Rate

We used a discount rate of 8.1 percent. REopt uses this to calculate net present value (NPV)
from the initial cost and utility savings cash flows over the 20-year analysis period.

7.4 Economics and Resilience for Outage Operations

In addition to economic operations, wemodel resilience scenarios as a combination of outage
duration and resilient energy needs during the outage. We study a range of outage scenarios
across the economic-resilience spectrum, considering everyday operation economic
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optimization with no outages, and also design changes and costs incurred to provide energy
for outages lasting two, four, and eight days (48, 96, and 192 hours) at various levels of critical
load.

7.4.1 Outage Durations

Long-duration outage causes include hurricanes, seasonal storms, wildfires, and recently in
California, Public Safety Power Shutoffs (PSPS). According to utility reliability reports, the
average outage duration for customers served by PG&E was two hours and forty five minutes
in 2021, but some can last much longer.74 For example, PSPS events in California, which have
impacted 3.2 million customers over the last 10 years, lasted an average of approximately two
days—but ten percent of PSPS customer outages have been longer than four days, and the
longest PSPS customer outages reported so far were six days.75 Gorman et al. study the
resilience potential of economically optimized solar+storage using a sample of ten historical
events, including hurricanes, wildfires, and winter storms.76 Their base scenario assumes a
three-day outage.

While most outages are less than three hours, andmost long-duration outages caused by
extreme weather last less than four days, climate change is likely to increase the frequency,
duration, and geographic range of severe weather and associated outages. As such, resilience
hub design should reflect the uncertainty in this risk, and be designed for extreme events.

7.4.2 Critical Loads

Resilience hub planning must consider the services to be provided during outages and their
power and energy requirements. Roode and Martinac describe a resilient power spectrum
covering the most resilient systems that provide little or no benefit during everyday
operations but offer long-duration backup to critical loads during power outages to the most
economic systems that provide environmental and economic benefits with less resilience.36

This study explores this spectrum by investigating trade-offs between economically optimal
solutions for everyday operations and various resilience-focused solutions.

A challenge for a resilient solar+storage power system occurs when, over the course of an
outage, solar energy input is lower than energy needs. For each potential resilience hub
location, we combined data from the National Solar Radiation Data Base (NSRDB)77 with load
profile data for each site and generated a daily average ratio of solar energy versus energy
needs for eachmonth of the year. We assumed a solar conversion efficiency of 20 percent,
consistent with current commercially available technology.78 We also assumed that half of the
roof space is available for solar panel installation, as commercial estimates for roof space
available prior to detailed site-studies assume 50 percent obstruction and shading.79

However, actual available roof space will vary by building as a function of shading, roof pitch,
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equipment obstruction, and other factors with regional estimated averages ranging from 22
percent to 95 percent.80

For any given site, prioritizing energy needs to identify critical loads would be the role of site
operators and stakeholders, which is beyond the scope of this work. Here, we estimate critical
loads as percentages of normal load. For each site and outage duration, we selected critical
load percentages (CLPs) to test how different ratios of solar production affect the site’s ability
to meet critical loads. If Sm is the daily average solar energy generated in a given month, and
Ln is the normal-load daily average energy used in that month, the ratio of load-to-solar is Rn=
Ln/Sm. To study a range of contingencies, we simulated a broad set of CLPs, with CLP being a
scalar constant used to modify the normal load profile such that critical load Lc = (CLP)*(Ln).
We select CLPs for each site in order to test a range of critical load to solar ratios (Rc) such that
the daily ratio of critical load over solar energy in (Rc = Lc/Sm) extends from solar energy
providing half of the critical daily energy needs (Rc = 2) to solar providing four times the
critical daily energy needs (Rc = 0.25), with a range of intermediate values also tested. CLPs
selected range from seven percent (low sunlight, high load) to 800 percent (high sunlight, low
load) of everyday loads. We expected battery size and cost would increase with increasing Rc,
and this range allowed us to study the implications on the cost of resilience for each site.

7.4.3 Outage Start Times

All simulated outages start at 9 a.m. on the first Tuesday of the month, even though real
outages are typically not scheduled. This consistent morning start time allows for
comparisons of difficult design cases, as batteries will be at their lowest state of charge after
serving nighttime load. We use monthly average load and average solar production to select
scenarios and wemodel sites in REopt using realistic hourly load profiles developed using the
methods in Section 6 and solar data from the PVWatts database.81 We deterministically
choose the first Tuesday of challenging outage months, which could miss the most
challenging days in the most challenging month. In future iterations of this work, we will look
at different weather events and resulting outages to better characterize design needs
consistent with extreme weather events like heat waves and winter storms that coincide with
long periods of poor sunlight. This type of reliability analysis is beyond our current scope, as
the goal is to identify where there will be challenges in funding resilience, not to calculate
exact design parameters for every site or contingency.

We choose the most challenging months for each site to stress resilience designs. When net
daily energy—the difference between total daily energy consumed and daily solar
production—is positive, the site is using more energy than can be produced by rooftop solar.
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Table 7.4, defines some of the key variables for this analysis. Wemodeled outages in both the
most challenging month at each site, where Rnm, the ratio of normal load to solar input, is
highest (typically in winter), and the least challenging month at each site, where Rnm is lowest
(typically in spring or early summer).

Table 7.4: Key Variables Included in the Statewide Analysis

Variable Description

NPV Net present value, the discounted worth of all costs (up-front,
operations, maintenance, disposal) and benefits (bill reductions) over
the 20 year lifecycle

NPVeveryday NPV for the economically optimal design

NPVscenario NPV for the outage scenario design

ΔNPVresilience
Difference in NPV, or the NPV cost of resilience, given by
NPVeveryday-NPVscenario

CLP Critical load percentage, or fraction of everyday energy deemed
necessary for critical missions during an outage

Sm Daily average solar energy generated for month m

Lnm Daily average energy load for normal everyday operations for month m

Lcm Daily energy load for critical operations for month m (CLP*Lnm)

Rnm
Ratio of daily average energy to solar energy generated for month m
(Lnm/Sm)

Rcm
Ratio of daily critical energy to solar energy generated for month m
(Lcm/Sm); coincident with Rnm

Pn_annual Average annual power, everyday operations

Pnm Average power during the outage month, everyday operations

Pcm Average critical power (Pnm*CLP)

Table 7.4. Key Variables Included in the Statewide Analysis.
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7.4.4 Interpolating fromModeled Sites

Wemodeled a sample of 1,097 sites out of the 18,000 potential sites identified. To minimize
computation time, we used the modeled results to estimate key outputs for all sites by
running a series of regressions on the modeled results and interpolating the results of these
regressions back to the full set of potential sites.

We ran a series of linear regressions to characterize the influence of local building load and
utility rate on everyday and resilience designs and costs. The key output variables included
solar+storage system designs, financial metrics, and emissions reduction metrics. Financial
metrics include initial capital costs after incentives (in dollars) and the NPV in dollars.
Emissions reductions were calculated for CO2, nitrogen oxides (NOx), and primary fine
particulate matter (PM2.5).

For the economic base case analysis, we performed regressions against annual average power
(Pn_annual). Where there were enough sites in each category, utility, and utility rate to develop
statistically significant regressions, we did so. For outage durations of 48, 96, and 192 hours,
we performed regressions against critical average power during the outage (Pcm) for battery
and financial variables. For solar installation size and the emissions reductions we continue to
use Pn_annualas the regression variable. In addition to category, utility, and utility rate, we also
groupedmodels by the critical-load-to-solar ratio (Rcm).

Each regression was performed considering a non-zero intercept and a zero intercept, and
mean values for each output variable were also calculated. In many cases, we could assume
that the regression constant must be zero because the dependent variable in each regression
could be assumed to be zero if average power or average critical power were zero. That is, if
power equals zero, then no solar nor battery would be needed, no pollution would be
emitted, and no costs would be incurred. In these cases, regression through the origin
(constant equals zero) would be appropriate. Assuming a zero constant would introduce
errors if, for example, solar installation size were limited by regulation under an upper bound
(as is true in California). Below this upper boundary, a linear regression through the origin fits
best; above this boundary, a constant term (the regulated maximum) with zero slope fits best.
Textbooks caution against dropping the constant term from a regression, but in some cases,
as discussed here, regression through the origin is necessary.82

From the candidate regressions andmean value models for each sample building set, we
selected the model(s) that met significance thresholds of p≦ 0.05 for the regression
parameter and the constant, as appropriate. If more than one was significant, we selected the
model with the lowest standard deviation in the residuals. If multiple candidates still existed,
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we selected the model with the highest adjusted R-squared value. We then used the selected
model to estimate the design, financial, and environmental outputs for all 18,000 sites.

We estimate the financial costs of resilience, using the difference between the cost for the
solar+storage design to survive an outage (e.g., a resilience scenario) and the solar+storage
design for everyday operations. If the economically optimal design in either type of scenario
has a positive NPV, it likely can be financed and would not require grant funding or other state
support beyond loan guarantees. The designs to meet resilience scenarios, especially those of
long duration and high critical loads, will have higher initial costs and lower (possibly
negative) NPVs. For each site, the difference in cost between the resilience scenario and
everyday operations is thus the marginal cost for that level of resilience for the site. While
resilience has value, there is no commonly agreed upon approach to assigning it an economic
value. There are fewer funding mechanisms for resilience-only operations.

7.4.5 Resilience Hub Capacity or “Seats”

It is important to quantify howmany people can be served by a hub simultaneously
throughout an outage. We estimate resilience hub capacity, or simultaneous “seats,” in two
ways: first with an available building space constraint and second with building space and
available energy constraints.

If grid power is available and critical services like clean, conditioned air for an emergency
shelter are needed, we estimate this capacity by dividing the total square footage by the 70
square feet per person required for a bed and storage space for emergency housing according
to the California Building Code.83We consider this an upper bound on hub capacity from these
buildings, as not every event will require beds and storage space. However, we note that this
rough estimate assumes that every room, space, and hallway in the resilience hub is available
for emergency use.

We also considered an energy-per-person constraint. We do not have occupancy numbers for
places of worship, community centers, or community colleges to determine energy use per
occupant. However, we do have enrollment numbers for primary and secondary schools, and
have used those to estimate energy needs for everyday operations at each school per person.
We then used that energy intensity to constrain capacity at nearby locations.

8.0 Greenhouse Gas andCo-Pollutant Estimates
REopt provides emission reduction estimates for CO2 and other air pollutants based on hourly
local marginal emissions intensity data from EPA’s AVERTmodel based on the 2020 National
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Emissions Inventory (NEI) and projections of emissions from NREL’s Cambiummodel.81 For
this work, we used REopt to calculate emissions reductions for CO2, NOx, and PM2.5.

9.0 Hub Deployment OptimizationModels
The complexity of the trade-offs between population vulnerability, climate risk, hub design,
existing social infrastructure, and transportation makes it challenging to understand how
these variables interact in the deployment of resilience hubs. It is also difficult to quantify the
number of hubs that would be needed, or the amount of distributed solar and storage
required to meet a given resilience target. Methods similar to those used for disaster
preparation or logistical deployment of resources (often referred to as locational allocation
models) can help frame how these variables interact with each other in hypothetical hub
deployment scenarios, as well as estimate the total resources needed to meet certain
resilience targets. However, we stress that the utility of these models is limited to specific
questions and is not intended to determine which specific sites are turned into hubs, for
multiple reasons. One leading reason is that these models are not aware of some of the most
important aspects of resilience hubs, including whether they are actively in use and if they are
considered safe places to go for help.

9.1 Location Allocation Modeling Overview

In location-allocation models, the locations of certain resources are chosen in such a way as
to meet certain goals while minimizing a quantity, such as the cost to build those resources.
The structure of these models is demonstrated in Figure 9.1. Specifically, these models
choose which sites from the inventory to turn into hubs (red X’s) and the number of people to
travel from each block group (purple stars) to each site within a three-mile range (blue lines
show for one example site). We build sites that consider all sites simultaneously across
California.
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Figure 9.1. Schematic of Location Allocation Modeling Data.Map of Oakland road network
downloaded from OpenStreetMaps centered on the Lincoln Recreation Center. Purple stars
are located at the node nearest to the centroid of a block group and its size is proportional to
the population of that block group. Each site’s nearest node is marked with an “X” and its size
is proportional to the number of people that can be served through a 96-hour outage once
retrofitted with solar+storage. The blue lines are the shortest driving paths from each block
group to the Lincoln Recreation Center. Block groups greater than three miles away are not
mapped as their population is deemed too far from the chosen site in models used here.

We build three different types of models depending on the question of interest. The first is a
Number of Hubs Minimizationmodel. This model chooses the fewest sites from the
inventory such that a minimum predetermined number of people lives within range of them.
These models assume all sites have unlimited capacity. Since this dataset does not capture
the cost or capacity for serving populations during everyday operations when there is no
outage, this class of model is useful for modeling year-round resilience services. The second is
a Capital Cost Minimizationmodel. This model minimizes the total cost for retrofitting the
existing building with backup solar and storage through a 96-hour outage. As such, this model
accounts for the number of people that can be simultaneously served through an outage. The
third model is a DemandMaximizationmodel. Demand refers to the number of people that
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can be served. This model can take two forms. The first form is for everyday operations when
we assume there is a maximum number of hubs and that hubs can serve everyone living
within driving range of the hub. The second form is for considering backup power during an
outage. In this form, we assume that there is a maximum budget for backup energy and the
model tries to serve the most people possible given the limited capacity of hubs. In each
model, we additionally incorporate ways to target priority populations typically based on
their vulnerability.

Each model can be represented with mathematical equations. Optimization models are
composed of an objective function and a set of constraints. The objective function is the
calculation the model is trying to minimize (e.g., cost). It minimizes this function by choosing
values from a set of two types of decision variables. The first decision variable is Ks, which is a
one for each site s (red X’s in Figure 9.1) that is chosen to build into a hub and a zero for the
rest. The second decision variable is N{s,b}, which counts the number of people that are
assigned to a site s from a block group b from the list of all pairs of sites and block groups
within driving distance of each other, represented by the blue paths in Figure 9.1. Using{𝑠, 𝑏}
these decision variables, the objective functions for eachmodel take the form shown in Table
9.1.

Table 9.1: Objective Functions for Each Optimization Model

Objective Function Description Mathematical formulation

Number of Hubs Minimization. Choose the fewest number of
sites. 𝑚𝑖𝑛

𝐾
𝑠 𝑠

𝑆

∑ 𝐾
𝑠

Capital Cost Minimization. Choose the sites that have the lowest
total capital cost. 𝑚𝑖𝑛

𝐾
𝑠 𝑠

𝑆

∑ 𝐾
𝑠
𝐶

𝑠

Demand Maximization. Assign the most number of people within
range to hubs. 𝑚𝑎𝑥

𝑁
{𝑠,𝑏}

,𝐾
𝑠 {𝑠,𝑏}

∑ 𝐾
𝑠
 𝑁

{𝑠,𝑏}

Table 9.1. Objective functions for each optimizationmodel.

Multiple additional constraints are used to design models. Some constraints are more
obvious. These include that people cannot travel greater than the maximum driving distance
and that the number of people assigned to hubs from a block group cannot exceed the total
population of that block group.
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One constraint worth more attention is that a certain minimum number of people must be
served by a hub. Mathematically, this constraint takes the general form of:

where represent all pairs of sites and block groups that are within a maximum driving{𝑠, 𝑏}
distance of each other, Ns,b is the number of people traveling from block group b to site s, and
Dmin is the minimum population or “demand” that the user specifies must be assigned to a
site. Importantly, this constraint may exist multiple times in a model for multiple population
groups. For example, a constraint may state that “at least 1,000 persons in block groups in the
most vulnerable quartile in Los Angeles must be served.” In mathematical form, this would be
written as:

where where is the vulnerability percentile for block group𝐼
𝑉

(𝑏) = 1 𝑖𝑓 𝑉
𝑏

> 75 𝑒𝑙𝑠𝑒 0 𝑉
𝑏

𝑏

and . As such, many such constraints may exist for a𝐼
𝐿𝐴

(𝑏) = 1 𝑖𝑓 𝑏 𝑖𝑛 𝐿𝑜𝑠 𝐴𝑛𝑔𝑒𝑙𝑒𝑠 𝑒𝑙𝑠𝑒 0

given model and can be specific for populations from only specific block groups, such as
those identified as vulnerable, or for those from a given subregion.

Models will return optimal values for each of these variables depending on the set of input
variables the user specifies. In the case of California resilience hubs, these user specified
variables include the following:

● The cost to deploy a resilience hub at a given site. In practice, we choose the
scenario of a 96-hour outage and the total capital cost of solar+storage whose
parameters are discussed in Section 7.

● Themaximum number of people that can simultaneously be served by a hub, also
referred to as the number of “seats” for a given scenario. These are also estimated
above in the section Resilience Hub Capacity or “Seats.”

● The population or “demand” minimum that must be served. Through repeated use
of the minimum demand constraint, this can be specified for multiple population
subsets. For example, the constraint may consider only block groups that are
above a certain minimum vulnerability threshold.
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Each of these models can be run as a whole across the entirety of California and for specific
areas such as counties or municipal areas. For example, we explore how the cost increases as

we increase the minimum population that must have access to a hub. We use the Pyomo84

package in Python to build these optimization models and solve themwith open-source
solvers, including GLPK.

9.2 Geographies for Geospatial Modeling

There are multiple choices possible for the geography of the sub-region to conduct a location
allocation model. Each has its own set of advantages and disadvantages and as such, we use
different geographies for different purposes.

● Entire state of California. Performing a model at the scale of all of California has the
disadvantage of concentrating all of the sites in spatially very dense areas while
entirely neglecting large areas of California. In Figure 9.2, we demonstrate howwe
use state Senate districts, areas that roughly match onemillion individuals each, to
encourage a more realistic geographic dispersion.

● Counties are useful as they can be a decision-making geography. However, their
population sizes vary drastically with Los Angeles covering nearly 10 million
people, while Alpine County only has around one thousand people. As such,
county geographies make it challenging to perform comparisons. Dividing Los
Angeles into county subdivisions can help produce geographies of smaller
populations.

● Senate and assembly districts address the weaknesses of modeling the entire
California and county geographies. They have roughly uniform populations of one
million and half a million people respectively. As such, they are useful for making
comparisons such as identifying areas where more sites may be needed per capita
due to a spread-out population. Their disadvantage is that decision making is less
common at the district level than other geographies.

● Metropolitan statistical areas are useful for looking at trends in urban areas.
● Utility service areas may be useful for decision making for utility programs;

however, utility service areas overlap so it is not clear whether sites would be
customers of any given utility.
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Figure 9.2 Modeling results from two site minimizationmodels. The left requires at least
20 percent of all population to reside within a three-mile range of a hub. Moreover, 25 and 50
percent of the third quartile and fourth quartile population must also be served with a
resilience hub respectively. The majority of hubs are concentrated in LA and 199 hubs were
required. On the right, a further constraint requires that at least half of the vulnerable
populations servedmust be proportionally distributed in each senate district, outlined in
black. For example, if ten percent of all the California population in vulnerable tracts lives in a
given district, then at least five percent of the population within range of a hubmust also live
in that district. In this map, hubs are more distributed across California while still meeting the
same overall and vulnerable population constraints. This model required 236 hubs.
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APPENDIX A: CBE Resilience Hub Survey
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APPENDIX B: Utility Rate Database Descriptions
Differing utility rates across California offer natural experiments in rate designs. The City of
Anaheim Public Utilities District (COAPUD), City of Riverside (COR), Imperial Irrigation District
(IID), and Modesto Irrigation District (MID) did not have TOU rates in the URDB, and so only
have constant prices for purchase and sell-back for solar and solar+storage; prices range from
$0.093/kWh (IID) to $0.206/kWh (COR). Non-TOU rates will likely disincentivize battery
adoption, given that there is no economic incentive for time-shifting consumption to cheaper
rate periods. Higher prices should correlate with higher solar adoption, given similar
insolation.
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Differing utility rates across California offer natural experiments in rate designs. The City of
Anaheim Public Utilities District (COAPUD), City of Riverside (COR), Imperial Irrigation District
(IID), and Modesto Irrigation District (MID) did not have TOU rates in the URDB, and so only
have constant prices for purchase and sell-back for solar and solar+storage; prices range from
$0.093/kWh (IID) to $0.206/kWh (COR). Non-TOU rates will likely disincentivize battery
adoption, given that there is no economic incentive for time-shifting consumption to cheaper
rate periods. Higher prices should correlate with higher solar adoption, given similar
insolation.

Maximum energy prices in summer afternoons range from $0.093 (IID) to $0.376/kWh
(Southern California Edison (SCE)) while summer evening prices range from $0.083 (COR) to
$0.361/kWh (San Diego Gas and Electric ((SDG&E)). TOU schedules and prices vary across the
utilities that apply them, with different start-stop times both seasonally and daily. SDG&E
offers a unique case among the rates modeled, having a TOU rate on weekday summer
evenings ($0.36/kWh) that is $0.10 higher than its afternoon rate ($0.26/kWh). This should
incentivize battery adoption to enable solar energy collected in the afternoon to be used in
lieu of higher-priced grid energy in the evening. More utilities are providing rates with higher
evening prices than daytime prices to address duck curve and ramp rate concerns, since solar
production quickly drops off in summer evenings even as the system typically reaches its
peak load.85 This SDG&E rate was the only one of this type in California available in the URDB
at the time of this analysis.

The remaining TOU rates have prices where weekday summer afternoon rates are higher than
evening rates, ranging from $0.007/kWh in Los Angeles Department of Water and Power
(LADWP) to $0.255/kWh in SCE. Higher rate differential may incentivize larger solar but smaller
battery, given the limited value of time-shifting solar consumption to after sunset.

Demand charges also incentivize battery storage, especially if load profiles have short, intense
demand peaks that can bemitigated with stored energy. Demand rates range from $0/kW (at
multiple utilities) to $25/kW (Pacific Gas and Electric (PG&E)).
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Table B1: Utility Rate Summary
Utility Is TOU TOU rate

3pm
($/kWh)

TOU rate
7pm
($/kWh)

TOU
rate
11pm
($/kW
h)

Maximum
Demand
Rate
($/kW)

Minimu
m
Maximu
m
Demand
(kW)

Maximum
Maximum
Demand
(kW)

Effective
Date

Link to URDB

PG&E y 0.2899 0.2662 0.2389 0.00 0 75 2020-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5e162d795
457a3223473e
3af

PG&E y 0.2349 0.1798 0.1517 21.63 75 500 2020-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5e1630285
457a3d35f73e
3af

PG&E y 0.11325 0.11325 0.1072
7

24.93 500 1000 2021-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/608c4eec54
57a357322165
f8

PG&E y 0.16299 0.1196 0.0898
1

21.30 1000 10000 2021-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/5ed987ec5
457a3487edd
15ae

SCE y 0.22544 0.18244 0.1538
4

0.00 0 20 2018-10-01https://apps.o
penei.org/US
URDB/rate/vie
w/5bc7b6c75
457a3a2783b
43ec

SCE y 0.37561 0.12014 0.0557
5

15.89 20 200 2018-10-01https://apps.o
penei.org/US
URDB/rate/vie
w/5bc7ba425
457a3b5483b
43ed
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SCE y 0.34712 0.11336 0.0561
6

18.29 200 10000 2018-10-01https://apps.o
penei.org/US
URDB/rate/vie
w/5bc7bf0954
57a3b5483b4
3ef

LADWP y 0.2417 0.1888 0.1581
2

8.34 0 30 2019-04-01https://apps.o
penei.org/US
URDB/rate/vie
w/5cd304535
457a30e7954e
9d3

LADWP y 0.13136 0.12409 0.1033
6

10.00 30 10000 2019-04-01https://apps.o
penei.org/US
URDB/rate/vie
w/5a3821035
457a32645d2
dd80

SMUD y 0.3037 0.1111 0.1111 0.00 0 20 2019-06-25https://apps.o
penei.org/US
URDB/rate/vie
w/5dbc7e515
457a3d81edc
72bb

SMUD y 0.2634 0.0914 0.0914 7.66 20 300 2019-06-25https://apps.o
penei.org/US
URDB/rate/vie
w/5dbc85155
457a38c20dc7
2bb

SMUD y 0.2027 0.2027 0.1101 7.73 300 500 2019-06-25https://apps.o
penei.org/US
URDB/rate/vie
w/5dbc9a5f54
57a33c1fdc72
bb

SMUD y 0.1969 0.1969 0.1044 7.05 500 1000 2019-06-25https://apps.o
penei.org/US
URDB/rate/vie
w/5dbc89695
457a3d23fdc7
2bc

SMUD y 0.1698 0.1698 0.1084 4.06 1000 10000 2019-06-25https://apps.o
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penei.org/US
URDB/rate/vie
w/5dbc87985
457a37e1cdc7
2bb

SDG&E y 0.2566 0.36055 0.2566 0.00 0 5 2019-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/5cb73fe754
57a35a0a9b6
ec3

SDG&E y 0.2566 0.36055 0.2566 0.00 5 20 2019-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/5c39301054
57a3991c91e8
cb

SDG&E y 0.2566 0.36055 0.2566 0 20 50 2019-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/5c39301654
57a3470c91e8
cf

SDG&E y 0.2566 0.36055 0.2566 0 50 10000 2019-03-01https://apps.o
penei.org/US
URDB/rate/vie
w/5c39300a54
57a3bd1091e
8cd

COR n 0.02064 0.02064 0.0206
4

0 0 20 2013-03-26https://apps.o
penei.org/US
URDB/rate/vie
w/5b4e59355
457a3d45fc6d
674

COR n 0.1217 0.1217 0.1217 10.48 20 150 2013-03-26https://apps.o
penei.org/US
URDB/rate/vie
w/5b4e59875
457a3bb64c6
d676

COR y 0.1033 0.0828 0.0727 6.88 150 10000 2013-03-26https://apps.o
penei.org/US
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URDB/rate/vie
w/5b4e5a895
457a34913c6d
675

IID n 0.093 0.093 0.093 6.75 04 10000 2015-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/54bff53153
57a34f756bdb
a2

MID n 0.1583 0.1583 0.1583 0 0 20 2012-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b2809e05
457a3f778e5d
862

MID y 0.1294 0.1294 0.0696 16.37 205 1000 2017-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b2815535
457a3cc4ce5d
862

MID y 0.1148 0.1148 0.0621 17.8 1000 10000 2017-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b2822665
457a30764e5
d864

COAPUD n 0.119 0.119 0.119 15.65 200 500 2017-05-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b1ffd8e54
57a3317835b
56a

COAPUD n 0.1269 0.1269 0.1269 12.27 0 200 2018-05-01https://apps.o
penei.org/US
URDB/rate/vie

5 URDB indicates that an MID rate to cover max demand levels of 20-500kW exists
(https://apps.openei.org/USURDB/rate/view/5b280bc95457a3723de5d862) but that rate fails in REopt.Thus we
used this rate as a proxy in that power range.

4 URDB indicates that an IID rate to cover max demand levels of 0-100kW exists
(https://apps.openei.org/USURDB/rate/view/54bfef0a5357a3db776bdba2), but that rate fails in REopt. Thus we
used this rate as a proxy.
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w/5b1ed2aa5
457a3ef4335b
56b

COAPUD y 0.1535 0.1226 0.0842 15.68 500 10000 2017-05-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b1ee9f554
57a3cb4d35b
56b

TID y 0.1818 0.1818 0.1195 0 0 35 2015-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b4ccdff54
57a3e50dc6d
674

TID y 0.1284 0.1284 0.0893 13.24 35 500 2015-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b4d09295
457a3ca09c6d
674

TID y 0.1263 0.1263 0.0855 11.88 500 10000 2015-01-01https://apps.o
penei.org/US
URDB/rate/vie
w/5b4d105a5
457a3a85fc6d
678
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