This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: December 10, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Hydrocarbons in Upland Groundwater, Marcellus Shale Region, Northeastern Pennsylvania and Southern New York, U.S.A.
McMahon et al., July 2019
Hydrocarbons in Upland Groundwater, Marcellus Shale Region, Northeastern Pennsylvania and Southern New York, U.S.A.
Peter B. McMahon, Bruce D. Lindsey, Matthew D. Conlon, Andrew G. Hunt, Kenneth Belitz, Bryant C. Jurgens, Brian A. Varela (2019). Environmental Science & Technology, 8027-8035. 10.1021/acs.est.9b01440
Abstract:
Water samples from 50 domestic wells located <1 km (proximal) and >1 km (distal) from shale-gas wells in upland areas of the Marcellus Shale region were analyzed for chemical, isotopic, and groundwater-age tracers. Uplands were targeted because natural mixing with brine and hydrocarbons from deep formations is less common in those areas compared to valleys. CH4-isotope, predrill CH4-concentration, and other data indicate that one proximal sample (5% of proximal samples) contains thermogenic CH4 (2.6 mg/L) from a relatively shallow source (Catskill/Lock Haven Formations) that appears to have been mobilized by shale-gas production activities. Another proximal sample contains five other volatile hydrocarbons (0.03–0.4 μg/L), including benzene, more hydrocarbons than in any other sample. Modeled groundwater-age distributions, calibrated to 3H, SF6, and 14C concentrations, indicate that water in that sample recharged prior to shale-gas development, suggesting that land-surface releases associated with shale-gas production were not the source of those hydrocarbons, although subsurface leakage from a nearby gas well directly into the groundwater cannot be ruled out. Age distributions in the samples span ∼20 to >10000 years and have implications for relating occurrences of hydrocarbons in groundwater to land-surface releases associated with recent shale-gas production and for the time required to flush contaminants from the system.
Water samples from 50 domestic wells located <1 km (proximal) and >1 km (distal) from shale-gas wells in upland areas of the Marcellus Shale region were analyzed for chemical, isotopic, and groundwater-age tracers. Uplands were targeted because natural mixing with brine and hydrocarbons from deep formations is less common in those areas compared to valleys. CH4-isotope, predrill CH4-concentration, and other data indicate that one proximal sample (5% of proximal samples) contains thermogenic CH4 (2.6 mg/L) from a relatively shallow source (Catskill/Lock Haven Formations) that appears to have been mobilized by shale-gas production activities. Another proximal sample contains five other volatile hydrocarbons (0.03–0.4 μg/L), including benzene, more hydrocarbons than in any other sample. Modeled groundwater-age distributions, calibrated to 3H, SF6, and 14C concentrations, indicate that water in that sample recharged prior to shale-gas development, suggesting that land-surface releases associated with shale-gas production were not the source of those hydrocarbons, although subsurface leakage from a nearby gas well directly into the groundwater cannot be ruled out. Age distributions in the samples span ∼20 to >10000 years and have implications for relating occurrences of hydrocarbons in groundwater to land-surface releases associated with recent shale-gas production and for the time required to flush contaminants from the system.
Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA
Bamberger et al., May 2019
Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA
Michelle Bamberger, Marika R. Nell, Ahmed H. Ahmed, Renee Santoro, Anthony R. Ingraffea, Rana F. Kennedy, Susan C. Nagel, Damian E. Helbling, Robert E. Oswald (2019). Environmental Science: Processes & Impacts, . 10.1039/C9EM00112C
Abstract:
The contamination of surface water and ground water by human activities, such as fossil fuel extraction and agriculture, can be difficult to assess due to incomplete knowledge of the chemicals and chemistry involved. This is particularly true for the potential contamination of drinking water by nearby extraction of oil and/or gas from wells completed by hydraulic fracturing. A case that has attracted considerable attention is unconventional natural gas extraction in Susquehanna County, Pennsylvania, particularly around Dimock, Pennsylvania. We analyzed surface water and groundwater samples collected throughout Susquehanna County with complementary biological assays and high-resolution mass spectrometry. We found that Ah receptor activity was associated with proximity to impaired gas wells. We also identified certain chemicals, including disclosed hydraulic fracturing fluid additives, in samples that were either in close proximity to impaired gas wells or that exhibited a biological effect. In addition to correlations with drilling activity, the biological assays and high-resolution mass spectrometry detected substances that arose from other anthropogenic sources. Our complementary approach provides a more comprehensive picture of water quality by considering both biological effects and a broad screening for chemical contaminants.
The contamination of surface water and ground water by human activities, such as fossil fuel extraction and agriculture, can be difficult to assess due to incomplete knowledge of the chemicals and chemistry involved. This is particularly true for the potential contamination of drinking water by nearby extraction of oil and/or gas from wells completed by hydraulic fracturing. A case that has attracted considerable attention is unconventional natural gas extraction in Susquehanna County, Pennsylvania, particularly around Dimock, Pennsylvania. We analyzed surface water and groundwater samples collected throughout Susquehanna County with complementary biological assays and high-resolution mass spectrometry. We found that Ah receptor activity was associated with proximity to impaired gas wells. We also identified certain chemicals, including disclosed hydraulic fracturing fluid additives, in samples that were either in close proximity to impaired gas wells or that exhibited a biological effect. In addition to correlations with drilling activity, the biological assays and high-resolution mass spectrometry detected substances that arose from other anthropogenic sources. Our complementary approach provides a more comprehensive picture of water quality by considering both biological effects and a broad screening for chemical contaminants.
Inorganic Pollutants in the Water of Midland and Odessa, Permian Basin, West Texas
Rodriguez et al., January 2019
Inorganic Pollutants in the Water of Midland and Odessa, Permian Basin, West Texas
Jose Rodriguez, Joonghyeok Heo, Joonkyu Park, Seong-Sun Lee, Kristyn Miranda (2019). Air, Soil and Water Research, 1178622119861089. 10.1177/1178622119861089
Abstract:
The objective of this study is to evaluate the public water contamination in the cities of Midland and Odessa, West Texas. Even though both cities are geographically close, their sources of water for public use are different. For this study, the copper-, lead-, arsenic-, nitrate-, and chromium-level reports in drinking water, provided by the cities from 2008 to 2017, were organized and analyzed using Cubic Hermite Interpolation. The results for each contamination per city were compared and contrasted with the Environmental Protection Agency (EPA) standards. Also, this study proposed possible risks to human health, as well as potential origins of the pollutants. Finally, conclusions about the quality of water for human consumption and possible reasons behind the difference of results between the 2 cities were made.
The objective of this study is to evaluate the public water contamination in the cities of Midland and Odessa, West Texas. Even though both cities are geographically close, their sources of water for public use are different. For this study, the copper-, lead-, arsenic-, nitrate-, and chromium-level reports in drinking water, provided by the cities from 2008 to 2017, were organized and analyzed using Cubic Hermite Interpolation. The results for each contamination per city were compared and contrasted with the Environmental Protection Agency (EPA) standards. Also, this study proposed possible risks to human health, as well as potential origins of the pollutants. Finally, conclusions about the quality of water for human consumption and possible reasons behind the difference of results between the 2 cities were made.
Origin of Flowback and Produced Waters from Sichuan Basin, China
Ni et al., November 2018
Origin of Flowback and Produced Waters from Sichuan Basin, China
Yunyan Ni, Caineng Zou, Huiying Cui, Jian Li, Nancy E. Lauer, Jennifer S. Harkness, Andrew J. Kondash, Rachel M. Coyte, Gary S. Dwyer, Dan Liu, Dazhong Dong, Fengrong Liao, Avner Vengosh (2018). Environmental Science & Technology, . 10.1021/acs.est.8b04345
Abstract:
Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin. The chemical and isotope data indicate that the formation waters in Sichuan Basin originated from relics of different stages of evaporated seawater modified by water-rock interactions. The FP water from shale gas wells derives from blending of injected hydraulic fracturing water and entrapped saline (Cl ∼ 50,000 mg/L) formation water. Variations in the chemistry, δ18O, δ11B, and 87Sr/86Sr of FP water over time indicate that the mixing between the two sources varies with time, with a contribution of 75% (first 6 months) to 20% (>year) of the injected hydraulic fracturing water in the blend that compose the FP water. Mass-balance calculation suggests that the returned hydraulic fracturing water consisted of 28-49% of the volume of the injected hydraulic fracturing water, about a year after the initial hydraulic fracturing. We show differential mobilization of Na, B, Sr, and Li from the shale rocks during early stages of operation, which resulted in higher Na/Cl, B/Cl, Li/Cl, and 87Sr/86Sr and lower δ11B of the FP water during early stages of FP water formation relative to the original saline formation water recorded in late stages FP water. This study provides a geochemical framework for characterization of formation waters from different geological strata, and thus the ability to distinguish between different sources of oil and gas wastewater in Sichuan Basin.
Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin. The chemical and isotope data indicate that the formation waters in Sichuan Basin originated from relics of different stages of evaporated seawater modified by water-rock interactions. The FP water from shale gas wells derives from blending of injected hydraulic fracturing water and entrapped saline (Cl ∼ 50,000 mg/L) formation water. Variations in the chemistry, δ18O, δ11B, and 87Sr/86Sr of FP water over time indicate that the mixing between the two sources varies with time, with a contribution of 75% (first 6 months) to 20% (>year) of the injected hydraulic fracturing water in the blend that compose the FP water. Mass-balance calculation suggests that the returned hydraulic fracturing water consisted of 28-49% of the volume of the injected hydraulic fracturing water, about a year after the initial hydraulic fracturing. We show differential mobilization of Na, B, Sr, and Li from the shale rocks during early stages of operation, which resulted in higher Na/Cl, B/Cl, Li/Cl, and 87Sr/86Sr and lower δ11B of the FP water during early stages of FP water formation relative to the original saline formation water recorded in late stages FP water. This study provides a geochemical framework for characterization of formation waters from different geological strata, and thus the ability to distinguish between different sources of oil and gas wastewater in Sichuan Basin.
Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells
Woda et al., November 2018
Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells
Josh Woda, Tao Wen, David Oakley, David Yoxtheimer, Terry Engelder, M. Clara Castro, Susan L. Brantley (2018). Proceedings of the National Academy of Sciences, 201809013. 10.1073/pnas.1809013115
Abstract:
Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42− concentrations dropped. These observations are attributed to iron and SO42− reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42− that could distinguish newly leaked methane from older methane sources in aquifers.
Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42− concentrations dropped. These observations are attributed to iron and SO42− reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42− that could distinguish newly leaked methane from older methane sources in aquifers.
Assessing potential impacts of shale gas development on shallow aquifers through upward fluid migration: A multi-disciplinary approach applied to the Utica Shale in eastern Canada
Rivard et al., November 2018
Assessing potential impacts of shale gas development on shallow aquifers through upward fluid migration: A multi-disciplinary approach applied to the Utica Shale in eastern Canada
C. Rivard, G. Bordeleau, D. Lavoie, R. Lefebvre, P. Ladevèze, M. J. Duchesne, S. Séjourné, H. Crow, N. Pinet, V. Brake, A. Bouchedda, E. Gloaguen, J. M. E. Ahad, X. Malet, J. C. Aznar, M. Malo (2018). Marine and Petroleum Geology, . 10.1016/j.marpetgeo.2018.11.004
Abstract:
Potential impacts of shale gas development on shallow aquifers has raised concerns, especially regarding groundwater contamination. The intermediate zone separating shallow aquifers from shale gas reservoirs plays a critical role in aquifer vulnerability to fluid upflow, but the assessment of such vulnerability is challenging due to the general paucity of data in this intermediate zone. The ultimate goal of the project reported here was to develop a holistic multi-geoscience methodology to assess potential impacts of unconventional hydrocarbon development on fresh-water aquifers related to upward migration through natural pathways. The study area is located in the St. Lawrence Lowlands (southern Quebec, Canada), where limited oil and gas exploration and no shale gas production have taken place. A large set of data was collected over a ∼500 km2 area near a horizontal shale gas exploration well completed and fracked into the Utica Shale at a depth of ≈2 km. To investigate the intermediate zone integrity, this project integrated research results from multiple sources in order to obtain a better understanding of the system hydrodynamics, including geology, hydrogeology, deep and shallow geophysics, soil, rock and groundwater geochemistry, and geomechanics. The combined interpretation of the multi-disciplinary dataset demonstrates that there is no evidence of, and a very limited potential for, upward fluid migration from the Utica Shale reservoir to the shallow aquifer. Microbial and thermogenic methane in groundwater of this region appear to come from the shallow, organic-rich, fractured sedimentary rocks making up the regional aquifer. Nonetheless, diluted brines present in a few shallow wells close to and downstream of a normal fault revealed that some upward groundwater migration occurs, but only over a few hundred meters from the surface based on the isotopic signature of methane. This work should help support regulations related to shale gas development aiming to protect groundwater.
Potential impacts of shale gas development on shallow aquifers has raised concerns, especially regarding groundwater contamination. The intermediate zone separating shallow aquifers from shale gas reservoirs plays a critical role in aquifer vulnerability to fluid upflow, but the assessment of such vulnerability is challenging due to the general paucity of data in this intermediate zone. The ultimate goal of the project reported here was to develop a holistic multi-geoscience methodology to assess potential impacts of unconventional hydrocarbon development on fresh-water aquifers related to upward migration through natural pathways. The study area is located in the St. Lawrence Lowlands (southern Quebec, Canada), where limited oil and gas exploration and no shale gas production have taken place. A large set of data was collected over a ∼500 km2 area near a horizontal shale gas exploration well completed and fracked into the Utica Shale at a depth of ≈2 km. To investigate the intermediate zone integrity, this project integrated research results from multiple sources in order to obtain a better understanding of the system hydrodynamics, including geology, hydrogeology, deep and shallow geophysics, soil, rock and groundwater geochemistry, and geomechanics. The combined interpretation of the multi-disciplinary dataset demonstrates that there is no evidence of, and a very limited potential for, upward fluid migration from the Utica Shale reservoir to the shallow aquifer. Microbial and thermogenic methane in groundwater of this region appear to come from the shallow, organic-rich, fractured sedimentary rocks making up the regional aquifer. Nonetheless, diluted brines present in a few shallow wells close to and downstream of a normal fault revealed that some upward groundwater migration occurs, but only over a few hundred meters from the surface based on the isotopic signature of methane. This work should help support regulations related to shale gas development aiming to protect groundwater.
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA
McMahon et al., September 2018
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA
Peter B. McMahon, Judith C. Thomas, John T. Crawford, Mark M. Dornblaser, Andrew G. Hunt (2018). Science of The Total Environment, 791-801. 10.1016/j.scitotenv.2018.03.371
Abstract:
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27m from the contaminated monitoring well, had ~1000m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27m from the contaminated monitoring well, had ~1000m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.
Temporal variability of dissolved methane and inorganic water chemistry in private well water in New Brunswick, Canada
Loomer et al., July 2018
Temporal variability of dissolved methane and inorganic water chemistry in private well water in New Brunswick, Canada
Diana B. Loomer, Kerry T. B. MacQuarrie, Tom A. Al, Ian K. Bragdon, Heather A. Loomer (2018). Applied Geochemistry, 53-66. 10.1016/j.apgeochem.2018.05.003
Abstract:
In recent years, there have been a number of studies assessing water chemistry in private water supply wells in areas of unconventional oil and gas development. Many of the wells in these studies were only sampled once and a question remains as to how representative the results from a single sample are given the potential for temporal variability. To evaluate this issue, the temporal variability of water chemistry from fourteen private water wells in two study areas of southeastern New Brunswick was monitored on a monthly basis over the course of a year. The study areas had been the focus of unconventional natural gas development (the Sussex study area) or exploration (the Kent study area). Temporal data for dissolved methane, ethane and propane concentrations, the stable isotopes of carbon and hydrogen in methane, and inorganic chemistry were collected. In the Kent study area, there was little variation in water chemistry from the six wells studied, with the relative standard deviations (RSD) for methane ranging from 0 to 20%. This indicates that the water from these wells was not affected by seasonal factors such as changing temperature or hydrogeological conditions and that it is possible to acquire reproducible dissolved methane concentrations and water chemistry data from private water supply wells. The drillers’ logs for the Kent wells indicate that the casings were installed to depths that likely isolated the water-producing intervals from near-surface hydrogeochemical variations and that the majority of water drawn from the wells enters from a single, relatively high-yield, water-bearing zone. The temporal variability was higher in the eight wells located in the Sussex study area, with the RSDs for methane ranging from 18 to 141%. There were concurrent variations in inorganic parameters, suggesting that the changes in methane concentrations reflected hydrogeochemical fluctuations in the aquifers as opposed to sampling artifacts. The wells with the most variable water chemistry over time had multiple, often relatively low-yield, water-bearing zones. In those wells, methane was associated with Na-HCO3 water from relatively deep water-bearing zones, while dissolved oxygen (DO) and NO3 were associated with shallower, Ca-HCO3, groundwater. The presence of the redox-controlled species Mn, Fe, SO4 and H2S, did not appear to affect the temporal variability of methane.
In recent years, there have been a number of studies assessing water chemistry in private water supply wells in areas of unconventional oil and gas development. Many of the wells in these studies were only sampled once and a question remains as to how representative the results from a single sample are given the potential for temporal variability. To evaluate this issue, the temporal variability of water chemistry from fourteen private water wells in two study areas of southeastern New Brunswick was monitored on a monthly basis over the course of a year. The study areas had been the focus of unconventional natural gas development (the Sussex study area) or exploration (the Kent study area). Temporal data for dissolved methane, ethane and propane concentrations, the stable isotopes of carbon and hydrogen in methane, and inorganic chemistry were collected. In the Kent study area, there was little variation in water chemistry from the six wells studied, with the relative standard deviations (RSD) for methane ranging from 0 to 20%. This indicates that the water from these wells was not affected by seasonal factors such as changing temperature or hydrogeological conditions and that it is possible to acquire reproducible dissolved methane concentrations and water chemistry data from private water supply wells. The drillers’ logs for the Kent wells indicate that the casings were installed to depths that likely isolated the water-producing intervals from near-surface hydrogeochemical variations and that the majority of water drawn from the wells enters from a single, relatively high-yield, water-bearing zone. The temporal variability was higher in the eight wells located in the Sussex study area, with the RSDs for methane ranging from 18 to 141%. There were concurrent variations in inorganic parameters, suggesting that the changes in methane concentrations reflected hydrogeochemical fluctuations in the aquifers as opposed to sampling artifacts. The wells with the most variable water chemistry over time had multiple, often relatively low-yield, water-bearing zones. In those wells, methane was associated with Na-HCO3 water from relatively deep water-bearing zones, while dissolved oxygen (DO) and NO3 were associated with shallower, Ca-HCO3, groundwater. The presence of the redox-controlled species Mn, Fe, SO4 and H2S, did not appear to affect the temporal variability of methane.
Big Groundwater Data Sets Reveal Possible Rare Contamination Amid Otherwise Improved Water Quality for Some Analytes in a Region of Marcellus Shale Development
Wen et al., June 2018
Big Groundwater Data Sets Reveal Possible Rare Contamination Amid Otherwise Improved Water Quality for Some Analytes in a Region of Marcellus Shale Development
Tao Wen, Xianzeng Niu, Matthew Gonzales, Guanjie Zheng, Zhenhui Li, Susan L. Brantley (2018). Environmental Science & Technology, 7149-7159. 10.1021/acs.est.8b01123
Abstract:
Eleven thousand groundwater samples collected in the 2010s in an area of Marcellus shale-gas development are analyzed to assess spatial and temporal patterns of water quality. Using a new data mining technique, we confirm previous observations that methane concentrations in groundwater tend to be naturally elevated in valleys and near faults, but we also show that methane is also more concentrated near an anticline. Data mining also highlights waters with elevated methane that are not otherwise explained by geologic features. These slightly elevated concentrations occur near 7 out of the 1,385 shale-gas wells and near some conventional gas wells in the study area. For ten analytes for which uncensored data are abundant in this 3,000 km2 rural region, concentrations are unchanged or improved as compared to samples analyzed prior to 1990. Specifically, TDS, Fe, Mn, sulfate, and pH show small but statistically significant improvement, and As, Pb, Ba, Cl, and Na show no change. Evidence from this rural area could document improved groundwater quality caused by decreased acid rain (pH, sulfate) since the imposition of the Clean Air Act or decreased steel production (Fe, Mn). Such improvements have not been reported in groundwater in more developed areas of the U.S.
Eleven thousand groundwater samples collected in the 2010s in an area of Marcellus shale-gas development are analyzed to assess spatial and temporal patterns of water quality. Using a new data mining technique, we confirm previous observations that methane concentrations in groundwater tend to be naturally elevated in valleys and near faults, but we also show that methane is also more concentrated near an anticline. Data mining also highlights waters with elevated methane that are not otherwise explained by geologic features. These slightly elevated concentrations occur near 7 out of the 1,385 shale-gas wells and near some conventional gas wells in the study area. For ten analytes for which uncensored data are abundant in this 3,000 km2 rural region, concentrations are unchanged or improved as compared to samples analyzed prior to 1990. Specifically, TDS, Fe, Mn, sulfate, and pH show small but statistically significant improvement, and As, Pb, Ba, Cl, and Na show no change. Evidence from this rural area could document improved groundwater quality caused by decreased acid rain (pH, sulfate) since the imposition of the Clean Air Act or decreased steel production (Fe, Mn). Such improvements have not been reported in groundwater in more developed areas of the U.S.
Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio
Botner et al., June 2018
Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio
E. Claire Botner, Amy Townsend-Small, David B. Nash, Xiaomei Xu, Arndt Schimmelmann, Joshua H. Miller (2018). Environmental Monitoring and Assessment, 322. 10.1007/s10661-018-6696-1
Abstract:
Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH4) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH4 concentration, CH4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH4 source. Radiocarbon dating of CH4 in combination with stable isotopic analysis of CH4 in three samples indicated that fossil C substrates are the source of CH4 in groundwater, with one 14C date indicative of modern biogenic carbonate reduction. We found no relationship between CH4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH4 concentration, CH4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Open image in new window Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.
Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH4) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH4 concentration, CH4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH4 source. Radiocarbon dating of CH4 in combination with stable isotopic analysis of CH4 in three samples indicated that fossil C substrates are the source of CH4 in groundwater, with one 14C date indicative of modern biogenic carbonate reduction. We found no relationship between CH4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH4 concentration, CH4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Open image in new window Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.
Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater
Kassotis et al., April 2018
Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater
Christopher D. Kassotis, Danh C. Vu, Phuc H. Vo, Chung-Ho Lin, Jennifer N. Cornelius-Green, Sharyle Patton, Susan C. Nagel (2018). Archives of Environmental Contamination and Toxicology, 1-12. 10.1007/s00244-018-0521-2
Abstract:
Unconventional oil and natural gas (UOG) operations couple horizontal drilling with hydraulic fracturing to access previously inaccessible fossil fuel deposits. Hydraulic fracturing, a common form of...
Unconventional oil and natural gas (UOG) operations couple horizontal drilling with hydraulic fracturing to access previously inaccessible fossil fuel deposits. Hydraulic fracturing, a common form of...
Exploring the links between groundwater quality and bacterial communities near oil and gas extraction activities
Santos et al., March 2018
Exploring the links between groundwater quality and bacterial communities near oil and gas extraction activities
Inês C. Santos, Misty S. Martin, Michelle L. Reyes, Doug D. Carlton, Paula Stigler-Granados, Melissa A. Valerio, Kristina W. Whitworth, Zacariah L. Hildenbrand, Kevin A. Schug (2018). Science of The Total Environment, 165-173. 10.1016/j.scitotenv.2017.10.264
Abstract:
Bacterial communities in groundwater are very important as they maintain a balanced biogeochemical environment. When subjected to stressful environments, for example, due to anthropogenic contamination, bacterial communities and their dynamics change. Studying the responses of the groundwater microbiome in the face of environmental changes can add to our growing knowledge of microbial ecology, which can be utilized for the development of novel bioremediation strategies. High-throughput and simpler techniques that allow the real-time study of different microbiomes and their dynamics are necessary, especially when examining larger data sets. Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is a workhorse for the high-throughput identification of bacteria. In this work, groundwater samples were collected from a rural area in southern Texas, where agricultural activities and unconventional oil and gas development are the most prevalent anthropogenic activities. Bacterial communities were assessed using MALDI-TOF MS, with bacterial diversity and abundance being analyzed with the contexts of numerous organic and inorganic groundwater constituents. Mainly denitrifying and heterotrophic bacteria from the Phylum Proteobacteria were isolated. These microorganisms are able to either transform nitrate into gaseous forms of nitrogen or degrade organic compounds such as hydrocarbons. Overall, the bacterial communities varied significantly with respect to the compositional differences that were observed from the collected groundwater samples. Collectively, these data provide a baseline measurement of bacterial diversity in groundwater located near anthropogenic surface and subsurface activities.
Bacterial communities in groundwater are very important as they maintain a balanced biogeochemical environment. When subjected to stressful environments, for example, due to anthropogenic contamination, bacterial communities and their dynamics change. Studying the responses of the groundwater microbiome in the face of environmental changes can add to our growing knowledge of microbial ecology, which can be utilized for the development of novel bioremediation strategies. High-throughput and simpler techniques that allow the real-time study of different microbiomes and their dynamics are necessary, especially when examining larger data sets. Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is a workhorse for the high-throughput identification of bacteria. In this work, groundwater samples were collected from a rural area in southern Texas, where agricultural activities and unconventional oil and gas development are the most prevalent anthropogenic activities. Bacterial communities were assessed using MALDI-TOF MS, with bacterial diversity and abundance being analyzed with the contexts of numerous organic and inorganic groundwater constituents. Mainly denitrifying and heterotrophic bacteria from the Phylum Proteobacteria were isolated. These microorganisms are able to either transform nitrate into gaseous forms of nitrogen or degrade organic compounds such as hydrocarbons. Overall, the bacterial communities varied significantly with respect to the compositional differences that were observed from the collected groundwater samples. Collectively, these data provide a baseline measurement of bacterial diversity in groundwater located near anthropogenic surface and subsurface activities.
Colorado Water Watch: Real-Time Groundwater Monitoring for Possible Contamination from Oil and Gas Activities
Li et al., December 2017
Colorado Water Watch: Real-Time Groundwater Monitoring for Possible Contamination from Oil and Gas Activities
Huishu Li, Ji-Hee Son, Asma Hanif, Jianli Gu, Ashwin Dhanasekar, Kenneth Carlson (2017). Journal of Water Resource and Protection, 1660. 10.4236/jwarp.2017.913104
Abstract:
Currently, only a few states in the U.S. (e.g. Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, requiring one pre-drilling sample and two additional post-drilling samples within 6 - 12 months and 5 - 6 years of drilling, respectively. However, the monitoring method is limited to ex-situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring effectiveness, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state’s regulatory agency and also to provide real-time groundwater quality data to both industry and the public. The CWW uses simple in-situ water quality sensors based on surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time. This objective of this study was to improve the understanding of groundwater quality in Wattenberg field and assess event detection methods. The data obtained from 5 sites (the earliest monitoring sites in the CWW network) for 3 years of the regional monitoring network in Wattenberg field is used to illustrate the background information about groundwater quality and its changing trend, and make comparisons between two outlier detection methods, CANARY and simple moving median.
Currently, only a few states in the U.S. (e.g. Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, requiring one pre-drilling sample and two additional post-drilling samples within 6 - 12 months and 5 - 6 years of drilling, respectively. However, the monitoring method is limited to ex-situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring effectiveness, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state’s regulatory agency and also to provide real-time groundwater quality data to both industry and the public. The CWW uses simple in-situ water quality sensors based on surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time. This objective of this study was to improve the understanding of groundwater quality in Wattenberg field and assess event detection methods. The data obtained from 5 sites (the earliest monitoring sites in the CWW network) for 3 years of the regional monitoring network in Wattenberg field is used to illustrate the background information about groundwater quality and its changing trend, and make comparisons between two outlier detection methods, CANARY and simple moving median.
Modeling Changes to Streamflow, Sediment, and Nutrient Loading from Land Use Changes Due to Potential Natural Gas Development
Hanson et al., December 2017
Modeling Changes to Streamflow, Sediment, and Nutrient Loading from Land Use Changes Due to Potential Natural Gas Development
Lars Hanson, Steven Habicht, Prasad Daggupati, Raghavan Srinivasan, Paul Faeth (2017). Journal of the American Water Resources Association, 1293-1312. 10.1111/1752-1688.12588
Abstract:
Natural gas development using hydraulic fracturing has many potential environmental impacts, but among the most certain is the land disturbance required to build the well pads and other infrastructure required to drill and extract the gas. We used the Soil and Water Assessment Tool (SWAT) model to investigate how natural gas development could impact streamflow and sediment, total nitrogen (TN), and total phosphorous (TP) loadings in the upper Delaware River Basin (DRB), a relatively undeveloped watershed of 7,950km(2) that lies above the Marcellus Shale formation. If gas development was permitted, our projections show the DRB could experience development of over 600 well pads to extract natural gas at build out, which, with supporting infrastructure (roads, gathering pipelines), could convert over 5,000ha from existing land uses in the study area. In subbasins with development activity we found sediment, TN, and TP yields could increase by an average of 15, 0.08, and 0.03kg/ha/yr, respectively (an increase of 2, 3, and 15%, respectively) for each one percent of subbasin land area converted into natural gas infrastructure. At the study area outlet on the Delaware River at Port Jervis, New York, we found increases in the annual average streamflow and sediment, nitrogen, and phosphorus loads of up to 0.01, 0.2, 0.2, and 1%, respectively, for a rapid development year, and 0.08, 1.3, 2.0, and 11%, respectively, for the full development scenario. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.
Natural gas development using hydraulic fracturing has many potential environmental impacts, but among the most certain is the land disturbance required to build the well pads and other infrastructure required to drill and extract the gas. We used the Soil and Water Assessment Tool (SWAT) model to investigate how natural gas development could impact streamflow and sediment, total nitrogen (TN), and total phosphorous (TP) loadings in the upper Delaware River Basin (DRB), a relatively undeveloped watershed of 7,950km(2) that lies above the Marcellus Shale formation. If gas development was permitted, our projections show the DRB could experience development of over 600 well pads to extract natural gas at build out, which, with supporting infrastructure (roads, gathering pipelines), could convert over 5,000ha from existing land uses in the study area. In subbasins with development activity we found sediment, TN, and TP yields could increase by an average of 15, 0.08, and 0.03kg/ha/yr, respectively (an increase of 2, 3, and 15%, respectively) for each one percent of subbasin land area converted into natural gas infrastructure. At the study area outlet on the Delaware River at Port Jervis, New York, we found increases in the annual average streamflow and sediment, nitrogen, and phosphorus loads of up to 0.01, 0.2, 0.2, and 1%, respectively, for a rapid development year, and 0.08, 1.3, 2.0, and 11%, respectively, for the full development scenario. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.
Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Martin et al., October 2017
Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Misty S. Martin, Inês C. Santos, Doug D. Carlton, Paula Stigler-Granados, Zacariah L. Hildenbrand, Kevin A. Schug (2017). Science of The Total Environment, . 10.1016/j.scitotenv.2017.10.027
Abstract:
Groundwater is a major source for drinking water in the United States, and therefore, its quality and quantity is of extreme importance. One major concern that has emerged is the possible contamination of groundwater due to the unconventional oil and gas extraction activities. As such, the impacts of exogenous contaminants on microbial ecology is an area to be explored to understand what are the chemical and physical conditions that allow the proliferation of pathogenic bacteria and to find alternatives for water treatment by identifying organic-degrading bacteria. In this work, we assess the interplay between groundwater quality and the microbiome in contaminated groundwaters rich in hydrocarbon gases, volatile organic and inorganic compounds, and various metals. Opportunistic pathogenic bacteria, such as Aeromonas hydrophila, Bacillus cereus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were identified, increasing the risk for consumption of and exposure to these contaminated groundwaters. Additionally, antimicrobial tests revealed that many of the identified bacteria were resistant to different antibiotics. The MALDI-TOF MS results were successfully confirmed with 16S rRNA gene sequencing, proving the accuracy of this high-throughput method. Collectively, these data provide a seminal understanding of the microbial populations in contaminated groundwater overlying anthropogenic activities like unconventional oil and gas development.
Groundwater is a major source for drinking water in the United States, and therefore, its quality and quantity is of extreme importance. One major concern that has emerged is the possible contamination of groundwater due to the unconventional oil and gas extraction activities. As such, the impacts of exogenous contaminants on microbial ecology is an area to be explored to understand what are the chemical and physical conditions that allow the proliferation of pathogenic bacteria and to find alternatives for water treatment by identifying organic-degrading bacteria. In this work, we assess the interplay between groundwater quality and the microbiome in contaminated groundwaters rich in hydrocarbon gases, volatile organic and inorganic compounds, and various metals. Opportunistic pathogenic bacteria, such as Aeromonas hydrophila, Bacillus cereus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were identified, increasing the risk for consumption of and exposure to these contaminated groundwaters. Additionally, antimicrobial tests revealed that many of the identified bacteria were resistant to different antibiotics. The MALDI-TOF MS results were successfully confirmed with 16S rRNA gene sequencing, proving the accuracy of this high-throughput method. Collectively, these data provide a seminal understanding of the microbial populations in contaminated groundwater overlying anthropogenic activities like unconventional oil and gas development.
Considerations and Pitfalls in the Spatial Analysis of Water Quality Data and Its Association With Hydraulic Fracturing
Jesse M. Meik and A. Michelle Lawing, October 2017
Considerations and Pitfalls in the Spatial Analysis of Water Quality Data and Its Association With Hydraulic Fracturing
Jesse M. Meik and A. Michelle Lawing (2017). Advances in Chemical Pollution, Environmental Management and Protection, . 10.1016/bs.apmp.2017.08.013
Abstract:
Linking areas of high unconventional oil and gas development (UD) activity to groundwater quality is statistically challenging. As contaminant pathways reflect spatial processes, their elucidation requires spatially explicit analyses. Here, we consider complications in the statistical evaluation of suites of chemical constituents, review basics of spatial analysis, and illustrate geographically weighted regression (GWR) and Hot Spot Analysis (spatial clustering) using eight indicator variables from groundwater samples collected from the Trinity and Woodbine aquifers overlying the Barnett Shale in northern Texas, a region of high UD activity. GWR indicated that moderate variation in some variables (e.g., total dissolved solids) but zero variance in others (e.g., methanol) is explained by kernel density of UD wells. Hot Spot Analysis complemented GWR analyses and indicated several subregions of elevated concentrations for most variables. With the exception of a single area of extreme contamination straddling the Parker–Hood County line, hot spots showed little to moderate spatial congruence across variables. Collectively, our results suggest that while some groundwater contamination has resulted from UD activity, overall groundwater contamination is multifactorial, and contamination related to UD activity is likely stochastic rather than systematic.
Linking areas of high unconventional oil and gas development (UD) activity to groundwater quality is statistically challenging. As contaminant pathways reflect spatial processes, their elucidation requires spatially explicit analyses. Here, we consider complications in the statistical evaluation of suites of chemical constituents, review basics of spatial analysis, and illustrate geographically weighted regression (GWR) and Hot Spot Analysis (spatial clustering) using eight indicator variables from groundwater samples collected from the Trinity and Woodbine aquifers overlying the Barnett Shale in northern Texas, a region of high UD activity. GWR indicated that moderate variation in some variables (e.g., total dissolved solids) but zero variance in others (e.g., methanol) is explained by kernel density of UD wells. Hot Spot Analysis complemented GWR analyses and indicated several subregions of elevated concentrations for most variables. With the exception of a single area of extreme contamination straddling the Parker–Hood County line, hot spots showed little to moderate spatial congruence across variables. Collectively, our results suggest that while some groundwater contamination has resulted from UD activity, overall groundwater contamination is multifactorial, and contamination related to UD activity is likely stochastic rather than systematic.
Hydrogeochemical and Isotopic Indicators of Hydraulic Fracturing Flowback Fluids in Shallow Groundwater and Stream Water, derived from Dameigou Shale Gas Extraction in the Northern Qaidam Basin
Zheng et al., June 2017
Hydrogeochemical and Isotopic Indicators of Hydraulic Fracturing Flowback Fluids in Shallow Groundwater and Stream Water, derived from Dameigou Shale Gas Extraction in the Northern Qaidam Basin
Zhaoxian Zheng, Hongda Zhang, Zongyu Chen, Xufeng Li, Pucheng Zhu, Xiaoshun Cui (2017). Environmental Science & Technology, 5889-5898. 10.1021/acs.est.6b04269
Abstract:
Most of the shale gas production in northwest China is from continental shale. Identifying hydrogeochemical and isotopic indicators of toxic hydraulic fracturing flowback fluids (HFFF) has great significance in assessing the safety of drinking water from shallow groundwater and stream water. Hydrogeochemical and isotopic data for HFFF from the Dameigou shale formations (Cl/Br ratio (1.81X10(-4)-6.52X10(-4)), Ba/Sr (>0.2), delta B-11 (-10-1) and epsilon(SW)(Sr) (56-65, where epsilon(SW)(Sr) is the deviation of the Sr-87/Sr-86 ratio from that of seawater in parts per 10(4))) were distinct from data for the background saline shallow groundwater and stream water before fracturing. Mixing models indicated that inorganic elemental signatures (Br/Cl, Ba/Sr) and isotopic fingerprints (delta B-11, epsilon(SW)(Sr)) can be used to distinguish between HFFF and conventional oil-field brine in shallow groundwater and stream water. These diagnostic indicators were applied to identify potential releases of HFFF into shallow groundwater and stream water prior to fracturing and flowback. The monitored time series data for shallow groundwater and stream water exhibit no clear trends along mixing curves towards the HFFF end member, indicating that there is no detectable release occurring at present.
Most of the shale gas production in northwest China is from continental shale. Identifying hydrogeochemical and isotopic indicators of toxic hydraulic fracturing flowback fluids (HFFF) has great significance in assessing the safety of drinking water from shallow groundwater and stream water. Hydrogeochemical and isotopic data for HFFF from the Dameigou shale formations (Cl/Br ratio (1.81X10(-4)-6.52X10(-4)), Ba/Sr (>0.2), delta B-11 (-10-1) and epsilon(SW)(Sr) (56-65, where epsilon(SW)(Sr) is the deviation of the Sr-87/Sr-86 ratio from that of seawater in parts per 10(4))) were distinct from data for the background saline shallow groundwater and stream water before fracturing. Mixing models indicated that inorganic elemental signatures (Br/Cl, Ba/Sr) and isotopic fingerprints (delta B-11, epsilon(SW)(Sr)) can be used to distinguish between HFFF and conventional oil-field brine in shallow groundwater and stream water. These diagnostic indicators were applied to identify potential releases of HFFF into shallow groundwater and stream water prior to fracturing and flowback. The monitored time series data for shallow groundwater and stream water exhibit no clear trends along mixing curves towards the HFFF end member, indicating that there is no detectable release occurring at present.
Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas
McMahon et al., May 2017
Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas
Peter B. McMahon, Jeannie R.B. Barlow, Mark A. Engle, Kenneth Belitz, Patricia B. Ging, Andrew G. Hunt, Bryant C. Jurgens, Yousif K. Kharaka, Roland W. Tollett, Timothy M. Kresse (2017). Environmental Science & Technology, . 10.1021/acs.est.7b00746
Abstract:
Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (<0.15 μg/L), but relatively high frequencies (2.4–13.3% of samples), in the study areas. Eight of nine samples containing benzene had groundwater ages >2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.
Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (<0.15 μg/L), but relatively high frequencies (2.4–13.3% of samples), in the study areas. Eight of nine samples containing benzene had groundwater ages >2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.
Unconventional natural gas development did not result in detectable changes in water chemistry (within the South Fork Little Red River)
Austin et al., May 2017
Unconventional natural gas development did not result in detectable changes in water chemistry (within the South Fork Little Red River)
Bradley J. Austin, Erin Scott, Leslie Massey, Michelle A. Evans-White, Sally Entrekin, Brian E. Haggard (2017). Environmental Monitoring and Assessment, 209. 10.1007/s10661-017-5904-8
Abstract:
The Fayetteville Shale within north central Arkansas is an area of extensive unconventional natural gas (UNG) production. Recently, the Scott Henderson Gulf Mountain Wildlife Management Area (GMWMA) was leased from the state of Arkansas for NG exploration, raising concerns about potential impacts on water resources. From November 2010 through November 2014, we monitored four reaches of the South Fork Little Red River (SFLRR), within the GMWMA, establishing baseline physico-chemical characteristics prior to UNG development and assessing trends in parameters during and after UNG development. Water samples were collected monthly during baseflow conditions and analyzed for conductivity, turbidity, ions, total organic carbon (TOC), and metals. All parameters were flow-adjusted and evaluated for monotonic changes over time. The concentrations of all constituents measured in the SFLRR were generally low (e.g., nitrate ranged from <0.005 to 0.268 mg/l across all sites and sample periods), suggesting the SFLRR is of high water quality. Flow-adjusted conductivity measurements and sodium concentrations increased at site 1, while magnesium decreased across all four sites, TOC decreased at sites 1 and 3, and iron decreased at site 1 over the duration of the study. With the exception of conductivity and sodium, the physico-chemical parameters either decreased or did not change over the 4-year duration, indicating that UNG activities within the GMWMA have had minimal or no detectable impact on water quality within the SFLRR. Our study provides essential baseline information that can be used to evaluate water quality within the SFLRR in the future should UNG activity within the GMWMA expand.
The Fayetteville Shale within north central Arkansas is an area of extensive unconventional natural gas (UNG) production. Recently, the Scott Henderson Gulf Mountain Wildlife Management Area (GMWMA) was leased from the state of Arkansas for NG exploration, raising concerns about potential impacts on water resources. From November 2010 through November 2014, we monitored four reaches of the South Fork Little Red River (SFLRR), within the GMWMA, establishing baseline physico-chemical characteristics prior to UNG development and assessing trends in parameters during and after UNG development. Water samples were collected monthly during baseflow conditions and analyzed for conductivity, turbidity, ions, total organic carbon (TOC), and metals. All parameters were flow-adjusted and evaluated for monotonic changes over time. The concentrations of all constituents measured in the SFLRR were generally low (e.g., nitrate ranged from <0.005 to 0.268 mg/l across all sites and sample periods), suggesting the SFLRR is of high water quality. Flow-adjusted conductivity measurements and sodium concentrations increased at site 1, while magnesium decreased across all four sites, TOC decreased at sites 1 and 3, and iron decreased at site 1 over the duration of the study. With the exception of conductivity and sodium, the physico-chemical parameters either decreased or did not change over the 4-year duration, indicating that UNG activities within the GMWMA have had minimal or no detectable impact on water quality within the SFLRR. Our study provides essential baseline information that can be used to evaluate water quality within the SFLRR in the future should UNG activity within the GMWMA expand.
Strontium isotopes as a potential fingerprint of total dissolved solids associated with hydraulic-fracturing activities in the Barnett Shale, Texas
Richard B. Goldberg and Elizabeth M. Griffith, December 2024
Strontium isotopes as a potential fingerprint of total dissolved solids associated with hydraulic-fracturing activities in the Barnett Shale, Texas
Richard B. Goldberg and Elizabeth M. Griffith (2024). Environmental Geosciences, 151-165. 10.1007/s10661-017-5904-8
Abstract:
A dramatic increase in unconventional drilling that utilizes hydraulic fracturing to extract oil/gas over the past decade has led to concern over handling and management of produced/ flowback water (PFW; hydraulic-fracturing wastewater) because the potential exists for its accidental release into the environment. This PFW contains high amounts of total dissolved solids acquired from interaction with the reservoir formation. Development and testing of geochemical methods, such as strontium (Sr) isotope ratio (87Sr/86Sr) analysis, to determine the origin of dissolved solids in an environment would be valuable. Samples acquired from different sources in Texas overlying and within the Barnett Shale, such as surface/ground water and PFW, contain unique Sr concentrations and 87Sr/86Sr values, with the potential to be used as a geochemical fingerprint. This study shows that because of the very high concentration of Sr in PFW and its high 87Sr/86Sr value, when as little as 1% of a sample is PFW, the sample experiences a measurable change in 87Sr/86Sr. To determine which phase within the reservoir rock imparts its 87Sr/86Sr to the PFW, sequential extractions were performed on powdered Barnett Shale core samples. Results of the extractions show varying geochemical affinities and distinct 87Sr/86Sr values by leaching solution. However, a direct link to the PFW sample was not conclusive, likely because of the unknown location of the PFW sample and the spatially variable 87Sr/86Sr of the Barnett Shale. Future work requires further cooperation with industry or federal agencies that could provide a more complete set of samples.
A dramatic increase in unconventional drilling that utilizes hydraulic fracturing to extract oil/gas over the past decade has led to concern over handling and management of produced/ flowback water (PFW; hydraulic-fracturing wastewater) because the potential exists for its accidental release into the environment. This PFW contains high amounts of total dissolved solids acquired from interaction with the reservoir formation. Development and testing of geochemical methods, such as strontium (Sr) isotope ratio (87Sr/86Sr) analysis, to determine the origin of dissolved solids in an environment would be valuable. Samples acquired from different sources in Texas overlying and within the Barnett Shale, such as surface/ground water and PFW, contain unique Sr concentrations and 87Sr/86Sr values, with the potential to be used as a geochemical fingerprint. This study shows that because of the very high concentration of Sr in PFW and its high 87Sr/86Sr value, when as little as 1% of a sample is PFW, the sample experiences a measurable change in 87Sr/86Sr. To determine which phase within the reservoir rock imparts its 87Sr/86Sr to the PFW, sequential extractions were performed on powdered Barnett Shale core samples. Results of the extractions show varying geochemical affinities and distinct 87Sr/86Sr values by leaching solution. However, a direct link to the PFW sample was not conclusive, likely because of the unknown location of the PFW sample and the spatially variable 87Sr/86Sr of the Barnett Shale. Future work requires further cooperation with industry or federal agencies that could provide a more complete set of samples.
Corrigendum to “A reconnaissance analysis of groundwater quality in the Eagle Ford shale region reveals two distinct bromide/chloride populations” [Sci. Total Environ. 575 (2017) 672–680]
Hildenbrand et al., December 2024
Corrigendum to “A reconnaissance analysis of groundwater quality in the Eagle Ford shale region reveals two distinct bromide/chloride populations” [Sci. Total Environ. 575 (2017) 672–680]
Zacariah L. Hildenbrand, Doug D. Carlton Jr., Jesse M. Meik, Josh T. Taylor, Brian E. Fontenot, Jayme L. Walton, Drew Henderson, Jonathan B. Thacker, Stephanie Korlie, Colin J. Whyte, Paul F. Hudak, Kevin A. Schug (2024). Science of The Total Environment, . 10.1016/j.scitotenv.2017.05.200
Abstract:
Impact of Hydraulic Fracturing on the Quality of Natural Waters
Cel et al., December 2024
Impact of Hydraulic Fracturing on the Quality of Natural Waters
Wojciech Cel, Justyna Kujawska, Henryk Wasąg (2024). Journal of Ecological Engineering, 63-68. 10.12911/22998993/67852
Abstract:
Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016) while hydraulic fracturing was carried out...
Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016) while hydraulic fracturing was carried out...
Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas
Johnson et al., December 2024
Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas
Wilson H. Johnson, Marlis R. Douglas, Jeffrey A. Lewis, Tara N. Stuecker, Franck G. Carbonero, Bradley J. Austin, Michelle A. Evans-White, Sally A. Entrekin, Michael E. Douglas (2024). BMC Microbiology, 29. 10.1186/s12866-017-0926-5
Abstract:
Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization.
Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization.
How long do natural waters “remember” release incidents of Marcellus Shale waters: a first order approximation using reactive transport modeling
Zhang Cai and Li Li, December 2016
How long do natural waters “remember” release incidents of Marcellus Shale waters: a first order approximation using reactive transport modeling
Zhang Cai and Li Li (2016). Geochemical Transactions, 6. 10.1186/s12932-016-0038-4
Abstract:
Natural gas production from the Marcellus Shale formation has significantly changed energy landscape in recent years. Accidental release, including spills, leakage, and seepage of the Marcellus Shale flow back and produced waters can impose risks on natural water resources. With many competing processes during the reactive transport of chemical species, it is not clear what processes are dominant and govern the impacts of accidental release of Marcellus Shale waters (MSW) into natural waters. Here we carry out numerical experiments to explore this largely unexploited aspect using cations from MSW as tracers with a focus on abiotic interactions between cations released from MSW and natural water systems. Reactive transport models were set up using characteristics of natural water systems (aquifers and rivers) in Bradford County, Pennsylvania. Results show that in clay-rich sandstone aquifers, ion exchange plays a key role in determining the maximum concentration and the time scale of released cations in receiving natural waters. In contrast, mineral dissolution and precipitation play a relatively minor role. The relative time scales of recovery τrr, a dimensionless number defined as the ratio of the time needed to return to background concentrations over the residence time of natural waters, vary between 5 and 10 for Na, Ca, and Mg, and between 10 and 20 for Sr and Ba. In rivers and sand and gravel aquifers with negligible clay, τrr values are close to 1 because cations are flushed out at approximately one residence time. These values can be used as first order estimates of time scales of released MSW in natural water systems. This work emphasizes the importance of clay content and suggests that it is more likely to detect contamination in clay-rich geological formations. This work highlights the use of reactive transport modeling in understanding natural attenuation, guiding monitoring, and predicting impacts of contamination for risk assessment.
Natural gas production from the Marcellus Shale formation has significantly changed energy landscape in recent years. Accidental release, including spills, leakage, and seepage of the Marcellus Shale flow back and produced waters can impose risks on natural water resources. With many competing processes during the reactive transport of chemical species, it is not clear what processes are dominant and govern the impacts of accidental release of Marcellus Shale waters (MSW) into natural waters. Here we carry out numerical experiments to explore this largely unexploited aspect using cations from MSW as tracers with a focus on abiotic interactions between cations released from MSW and natural water systems. Reactive transport models were set up using characteristics of natural water systems (aquifers and rivers) in Bradford County, Pennsylvania. Results show that in clay-rich sandstone aquifers, ion exchange plays a key role in determining the maximum concentration and the time scale of released cations in receiving natural waters. In contrast, mineral dissolution and precipitation play a relatively minor role. The relative time scales of recovery τrr, a dimensionless number defined as the ratio of the time needed to return to background concentrations over the residence time of natural waters, vary between 5 and 10 for Na, Ca, and Mg, and between 10 and 20 for Sr and Ba. In rivers and sand and gravel aquifers with negligible clay, τrr values are close to 1 because cations are flushed out at approximately one residence time. These values can be used as first order estimates of time scales of released MSW in natural water systems. This work emphasizes the importance of clay content and suggests that it is more likely to detect contamination in clay-rich geological formations. This work highlights the use of reactive transport modeling in understanding natural attenuation, guiding monitoring, and predicting impacts of contamination for risk assessment.
Association of groundwater constituents with topography and distance to unconventional gas wells in NE Pennsylvania
Yan et al., November 2016
Association of groundwater constituents with topography and distance to unconventional gas wells in NE Pennsylvania
Beizhan Yan, Martin Stute, Reynold A. Panettieri, James Ross, Brian Mailloux, Matthew J. Neidell, Lissa Soares, Marilyn Howarth, Xinhua Liu, Pouné Saberi, Steven N. Chillrud (2016). The Science of the Total Environment, . 10.1016/j.scitotenv.2016.10.160
Abstract:
Recently we reported an association of certain diseases with unconventional gas development (UGD). The purpose of this study is to examine UGD's possible impacts on groundwater quality in northeastern Pennsylvania. In this study, we compared our groundwater data (Columbia 58 samples) with those published data from Cabot (1701 samples) and Duke University (150 samples). For each dataset, proportions of samples with elevated levels of dissolved constituents were compared among four groups, identified as upland far (i.e. ≥1km to the nearest UGD gas well), upland near (<1km), valley far (≥1km), and valley near (<1km) groups. The Columbia data do not show statistically significant differences among the 4 groups, probably due to the limited number of samples. In Duke samples, Ca and CI levels are significantly higher in the valley near group than in the valley far group. In the Cabot dataset, methane, Na, and Mn levels are significantly higher in valley far samples than in upland far samples. In valley samples, Ca, Cl, SO4, and Fe are significantly higher in the near group (i.e. <1km) than in the far group. The association of these constituents in valley groundwater with distance is observed for the first time using a large industry dataset. The increase may be caused by enhanced mixing of shallow and deep groundwater in valley, possibly triggered by UGD process. If persistent, these changes indicate potential for further impact on groundwater quality. Therefore, there is an urgent need to conduct more studies to investigate effects of UGD on water quality and possible health outcomes.
Recently we reported an association of certain diseases with unconventional gas development (UGD). The purpose of this study is to examine UGD's possible impacts on groundwater quality in northeastern Pennsylvania. In this study, we compared our groundwater data (Columbia 58 samples) with those published data from Cabot (1701 samples) and Duke University (150 samples). For each dataset, proportions of samples with elevated levels of dissolved constituents were compared among four groups, identified as upland far (i.e. ≥1km to the nearest UGD gas well), upland near (<1km), valley far (≥1km), and valley near (<1km) groups. The Columbia data do not show statistically significant differences among the 4 groups, probably due to the limited number of samples. In Duke samples, Ca and CI levels are significantly higher in the valley near group than in the valley far group. In the Cabot dataset, methane, Na, and Mn levels are significantly higher in valley far samples than in upland far samples. In valley samples, Ca, Cl, SO4, and Fe are significantly higher in the near group (i.e. <1km) than in the far group. The association of these constituents in valley groundwater with distance is observed for the first time using a large industry dataset. The increase may be caused by enhanced mixing of shallow and deep groundwater in valley, possibly triggered by UGD process. If persistent, these changes indicate potential for further impact on groundwater quality. Therefore, there is an urgent need to conduct more studies to investigate effects of UGD on water quality and possible health outcomes.
Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas – A Heavy Noble Gas Analysis
Wen et al., September 2016
Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas – A Heavy Noble Gas Analysis
Tao Wen, M. Clara Castro, Jean-Philippe Nicot, Chris M. Hall, Toti Larson, Patrick J. Mickler, Roxana Darvari (2016). Environmental Science & Technology, . 10.1021/acs.est.6b01494
Abstract:
This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84Kr and 132Xe. Dissolved methane concentrations are positively correlated with crustal 4He, 21Ne and 40Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases (20Ne, 36Ar, 84Kr, 132Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18°C-25°C and it suggests an in-situ, highly localized gas source. All of these four wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84Kr/36Ar and 132Xe/36Ar fractionation levels along with 4He/20Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.
This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84Kr and 132Xe. Dissolved methane concentrations are positively correlated with crustal 4He, 21Ne and 40Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases (20Ne, 36Ar, 84Kr, 132Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18°C-25°C and it suggests an in-situ, highly localized gas source. All of these four wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84Kr/36Ar and 132Xe/36Ar fractionation levels along with 4He/20Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.
A reconnaissance analysis of groundwater quality in the Eagle Ford shale region reveals two distinct bromide/chloride populations
Hildenbrand et al., September 2016
A reconnaissance analysis of groundwater quality in the Eagle Ford shale region reveals two distinct bromide/chloride populations
Zacariah L. Hildenbrand, Doug D. Carlton, Jesse M. Meik, Josh T. Taylor, Brian E. Fontenot, Jayme L. Walton, Drew Henderson, Jonathan B. Thacker, Stephanie Korlie, Colin J. Whyte, Paul F. Hudak, Kevin A. Schug (2016). The Science of the Total Environment, . 10.1016/j.scitotenv.2016.09.070
Abstract:
The extraction of oil and natural gas from unconventional shale formations has prompted a series of investigations to examine the quality of the groundwater in the overlying aquifers. Here we present a reconnaissance analysis of groundwater quality in the Eagle Ford region of southern Texas. These data reveal two distinct sample populations that are differentiable by bromide/chloride ratios. Elevated levels of fluoride, nitrate, sulfate, various metal ions, and the detection of exotic volatile organic compounds highlight a high bromide group of samples, which is geographically clustered, while encompassing multiple hydrogeological strata. Samples with bromide/chloride ratios representative of connate water displayed elevated levels of total organic carbon, while revealing the detection of alcohols and chlorinated compounds. These findings suggest that groundwater quality in the Western Gulf Basin is, for the most part, controlled by a series of natural processes; however, there is also evidence of episodic contamination events potentially attributed to unconventional oil and gas development or other anthropogenic activities. Collectively, this characterization of natural groundwater constituents and exogenous compounds will guide targeted remediation efforts and provides insight for agricultural entities, industrial operators, and rural communities that rely on groundwater in southern Texas.
The extraction of oil and natural gas from unconventional shale formations has prompted a series of investigations to examine the quality of the groundwater in the overlying aquifers. Here we present a reconnaissance analysis of groundwater quality in the Eagle Ford region of southern Texas. These data reveal two distinct sample populations that are differentiable by bromide/chloride ratios. Elevated levels of fluoride, nitrate, sulfate, various metal ions, and the detection of exotic volatile organic compounds highlight a high bromide group of samples, which is geographically clustered, while encompassing multiple hydrogeological strata. Samples with bromide/chloride ratios representative of connate water displayed elevated levels of total organic carbon, while revealing the detection of alcohols and chlorinated compounds. These findings suggest that groundwater quality in the Western Gulf Basin is, for the most part, controlled by a series of natural processes; however, there is also evidence of episodic contamination events potentially attributed to unconventional oil and gas development or other anthropogenic activities. Collectively, this characterization of natural groundwater constituents and exogenous compounds will guide targeted remediation efforts and provides insight for agricultural entities, industrial operators, and rural communities that rely on groundwater in southern Texas.
Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development
Hildenbrand et al., August 2016
Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development
Zacariah L. Hildenbrand, Doug D. Carlton Jr., Brian E. Fontenot, Jesse M. Meik, Jayme L. Walton, Jonathan B. Thacker, Stephanie Korlie, C. Phillip Shelor, Akinde F. Kadjo, Adelaide Clark, Sascha Usenko, Jason S. Hamilton, Phillip M. Mach, Guido F. Verbeck IV, Paul Hudak, Kevin A. Schug (2016). Science of The Total Environment, 906-913. 10.1016/j.scitotenv.2016.04.144
Abstract:
The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13 months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity.
The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13 months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity.
Measuring Concentrations of Dissolved Methane and Ethane and the 13C of Methane in Shale and Till
Hendry et al., August 2016
Measuring Concentrations of Dissolved Methane and Ethane and the 13C of Methane in Shale and Till
M. Jim Hendry, S. Lee Barbour, Erin E. Schmeling, Scott O. C. Mundle (2016). Groundwater, n/a-n/a. 10.1111/gwat.12445
Abstract:
Baseline characterization of concentrations and isotopic values of dissolved natural gases is needed to identify contamination caused by the leakage of fugitive gases from oil and gas activities. Methods to collect and analyze baseline concentration-depth profiles of dissolved CH4 and C2H6 and δ13C-CH4 in shales and Quaternary clayey tills were assessed at two sites in the Williston Basin, Canada. Core and cuttings samples were stored in Isojars® in a low O2 headspace prior to analysis. Measurements and multiphase diffusion modeling show that the gas concentrations in core samples yield well-defined and reproducible depth profiles after 31-d equilibration. No measurable oxidative loss or production during core sample storage was observed. Concentrations from cuttings and mud gas logging (including IsoTubes®) were much lower than from cores, but correlated well. Simulations suggest the lower concentrations from cuttings can be attributed to drilling time, and therefore their use to define gas concentration profiles may have inherent limitations. Calculations based on mud gas logging show the method can provide estimates of core concentrations if operational parameters for the mud gas capture cylinder are quantified. The δ13C-CH4 measured from mud gas, IsoTubes®, cuttings, and core samples are consistent, exhibiting slight variations that should not alter the implications of the results in identifying the sources of the gases. This study shows core and mud gas techniques and, to a lesser extent, cuttings, can generate high-resolution depth profiles of dissolved hydrocarbon gas concentrations and their isotopes.
Baseline characterization of concentrations and isotopic values of dissolved natural gases is needed to identify contamination caused by the leakage of fugitive gases from oil and gas activities. Methods to collect and analyze baseline concentration-depth profiles of dissolved CH4 and C2H6 and δ13C-CH4 in shales and Quaternary clayey tills were assessed at two sites in the Williston Basin, Canada. Core and cuttings samples were stored in Isojars® in a low O2 headspace prior to analysis. Measurements and multiphase diffusion modeling show that the gas concentrations in core samples yield well-defined and reproducible depth profiles after 31-d equilibration. No measurable oxidative loss or production during core sample storage was observed. Concentrations from cuttings and mud gas logging (including IsoTubes®) were much lower than from cores, but correlated well. Simulations suggest the lower concentrations from cuttings can be attributed to drilling time, and therefore their use to define gas concentration profiles may have inherent limitations. Calculations based on mud gas logging show the method can provide estimates of core concentrations if operational parameters for the mud gas capture cylinder are quantified. The δ13C-CH4 measured from mud gas, IsoTubes®, cuttings, and core samples are consistent, exhibiting slight variations that should not alter the implications of the results in identifying the sources of the gases. This study shows core and mud gas techniques and, to a lesser extent, cuttings, can generate high-resolution depth profiles of dissolved hydrocarbon gas concentrations and their isotopes.
Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the Central Appalachian Basin, Eastern United States
LeDoux et al., August 2016
Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the Central Appalachian Basin, Eastern United States
St. Thomas M. LeDoux, Anna Szynkiewicz, Anthony M. Faiia, Melanie A. Mayes, Michael L. McKinney, William G. Dean (2016). Applied Geochemistry, 73-85. 10.1016/j.apgeochem.2016.05.007
Abstract:
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl−, and HCO3−, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl−, and HCO3−, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.
Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado
Sherwood et al., July 2016
Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado
Owen A. Sherwood, Jessica D. Rogers, Greg Lackey, Troy L. Burke, Stephen G. Osborn, Joseph N. Ryan (2016). Proceedings of the National Academy of Sciences, 201523267. 10.1073/pnas.1523267113
Abstract:
Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km2 region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20–190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin.
Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km2 region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20–190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin.
Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming, Field
Dominic C. DiGiulio and Robert B. Jackson, March 2016
Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming, Field
Dominic C. DiGiulio and Robert B. Jackson (2016). Environmental Science & Technology, . 10.1021/acs.est.5b04970
Abstract:
A comprehensive analysis of all publicly available data and reports was conducted to evaluate impact to Underground Sources of Drinking Water (USDWs) as a result of acid stimulation and hydraulic fracturing in the Pavillion, WY, Field. Although injection of stimulation fluids into USDWs in the Pavillion Field was documented by EPA, potential impact to USDWs at the depths of stimulation as a result of this activity was not previously evaluated. Concentrations of major ions in produced water samples outside expected levels in the Wind River Formation, leakoff of stimulation fluids into formation media, and likely loss of zonal isolation during stimulation at several production wells, indicates that impact to USDWs has occurred. Detection of organic compounds used for well stimulation in samples from two monitoring wells installed by EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices.
A comprehensive analysis of all publicly available data and reports was conducted to evaluate impact to Underground Sources of Drinking Water (USDWs) as a result of acid stimulation and hydraulic fracturing in the Pavillion, WY, Field. Although injection of stimulation fluids into USDWs in the Pavillion Field was documented by EPA, potential impact to USDWs at the depths of stimulation as a result of this activity was not previously evaluated. Concentrations of major ions in produced water samples outside expected levels in the Wind River Formation, leakoff of stimulation fluids into formation media, and likely loss of zonal isolation during stimulation at several production wells, indicates that impact to USDWs has occurred. Detection of organic compounds used for well stimulation in samples from two monitoring wells installed by EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices.
Initial study of potential surface water quality impacts of horizontal drilling in the Marcellus shale
Hopkinson et al., March 2016
Initial study of potential surface water quality impacts of horizontal drilling in the Marcellus shale
Leslie Hopkinson, Ben Mack, D. Aaron Streets (2016). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 652-660. 10.1080/15567036.2013.813990
Abstract:
This research assessed impacts of drilling for gas in the Marcellus shale by monitoring water quality. Both a stream with an active drilling operation and a reference stream were monitored. Differences at the active reach were detected in turbidity, pH, conductivity, total dissolved solids, Sr, Ca, Cl, Na, Mg, alkalinity, and SO4. Differences were largely attributed to an expanded roadway, and the ranges of most measured parameters were within range of water quality criteria for West Virginia.
This research assessed impacts of drilling for gas in the Marcellus shale by monitoring water quality. Both a stream with an active drilling operation and a reference stream were monitored. Differences at the active reach were detected in turbidity, pH, conductivity, total dissolved solids, Sr, Ca, Cl, Na, Mg, alkalinity, and SO4. Differences were largely attributed to an expanded roadway, and the ranges of most measured parameters were within range of water quality criteria for West Virginia.
Effect of Different Sampling Methodologies on Measured Methane Concentrations in Groundwater Samples
Molofsky et al., March 2016
Effect of Different Sampling Methodologies on Measured Methane Concentrations in Groundwater Samples
Lisa J. Molofsky, Stephen D. Richardson, Anthony W. Gorody, Fred Baldassare, June A. Black, Thomas E. McHugh, John A. Connor (2016). Groundwater, n/a-n/a. 10.1111/gwat.12415
Abstract:
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre- and post-drill sampling programs in the Appalachian Basin. These include an open-system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct-Fill VOA) and two alternative methods: (1) a semi-closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct-Fill VOA (open system) samples, and Inverted VOA (semi-closed system) samples yielded lower concentrations. These results suggest that open and semi-closed system sample collection methods are adequate for non-effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre- and post-drill sampling programs in the Appalachian Basin. These include an open-system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct-Fill VOA) and two alternative methods: (1) a semi-closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct-Fill VOA (open system) samples, and Inverted VOA (semi-closed system) samples yielded lower concentrations. These results suggest that open and semi-closed system sample collection methods are adequate for non-effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.
Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach
Burton et al., March 2016
Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach
Taylour G. Burton, Hanadi S. Rifai, Zacariah L. Hildenbrand, Doug D. Carlton Jr, Brian E. Fontenot, Kevin A. Schug (2016). Science of The Total Environment, 114-126. 10.1016/j.scitotenv.2015.12.084
Abstract:
Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers.
Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers.
Methane occurrence is associated with sodium-rich valley waters in domestic wells overlying the Marcellus shale in New York State
Christian et al., January 2016
Methane occurrence is associated with sodium-rich valley waters in domestic wells overlying the Marcellus shale in New York State
Kayla M. Christian, Laura K. Lautz, Gregory D. Hoke, Donald I. Siegel, Zunli Lu, John Kessler (2016). Water Resources Research, 206-226. 10.1002/2015WR017805
Abstract:
Prior work suggests spatial parameters (e.g., landscape position, distance to nearest gas well) can be used to estimate the amount of dissolved methane in domestic drinking water wells overlying the deep Marcellus Shale. New York (NY) provides an opportunity to investigate methane occurrence prior to expansion of high-volume hydraulic fracturing because unconventional gas production is currently banned in the state. We sampled domestic groundwater wells for methane in 2013 (n = 137) across five counties of NY bordering Pennsylvania, and then resampled a subset of those wells in 2014 for methane concentrations and δ13C-CH4 and δD-CH4. The majority of waters from wells sampled (77%) had low concentrations of methane (<0.1 mg/L), and only 5% (n = 7) had actionable levels of methane (>10 mg/L). Dissolved methane concentrations did not change as a function of proximity to existing vertical gas wells, nor other parameters indicating subsurface planes of weakness (i.e., faults or lineaments). Methane levels were significantly higher in wells closer to hydrography flow lines, and most strongly correlated to Na-HCO3 water type. The distribution of methane between Ca-HCO3 (n = 76) and Na-HCO3 (n = 23) water types significantly differed (p < 0.01), with median methane concentrations of 0.002 and 0.78 mg/L, respectively. Combined classification of sampled waters based on the dominant water cation, well topographic position, and geologic unit of well completion effectively identified wells with a greater than 50% probability of having methane concentrations exceeding 1 mg/L. Such classification schemes may be useful as a screening tool to assess natural versus gas production-related sources of methane in domestic wells.
Prior work suggests spatial parameters (e.g., landscape position, distance to nearest gas well) can be used to estimate the amount of dissolved methane in domestic drinking water wells overlying the deep Marcellus Shale. New York (NY) provides an opportunity to investigate methane occurrence prior to expansion of high-volume hydraulic fracturing because unconventional gas production is currently banned in the state. We sampled domestic groundwater wells for methane in 2013 (n = 137) across five counties of NY bordering Pennsylvania, and then resampled a subset of those wells in 2014 for methane concentrations and δ13C-CH4 and δD-CH4. The majority of waters from wells sampled (77%) had low concentrations of methane (<0.1 mg/L), and only 5% (n = 7) had actionable levels of methane (>10 mg/L). Dissolved methane concentrations did not change as a function of proximity to existing vertical gas wells, nor other parameters indicating subsurface planes of weakness (i.e., faults or lineaments). Methane levels were significantly higher in wells closer to hydrography flow lines, and most strongly correlated to Na-HCO3 water type. The distribution of methane between Ca-HCO3 (n = 76) and Na-HCO3 (n = 23) water types significantly differed (p < 0.01), with median methane concentrations of 0.002 and 0.78 mg/L, respectively. Combined classification of sampled waters based on the dominant water cation, well topographic position, and geologic unit of well completion effectively identified wells with a greater than 50% probability of having methane concentrations exceeding 1 mg/L. Such classification schemes may be useful as a screening tool to assess natural versus gas production-related sources of methane in domestic wells.
Metal content in the waters of the upper Sanna River catchment (SE Poland): condition associated with drilling of a shale gas exploration wellbore
Chabudzinski et al., November 2015
Metal content in the waters of the upper Sanna River catchment (SE Poland): condition associated with drilling of a shale gas exploration wellbore
Lukasz Chabudzinski, Stanislaw Chmiel, Zdzislaw Michalczyk (2015). Environmental Earth Sciences, 6681-6691. 10.1007/s12665-015-4668-0
Abstract:
Detailed research on the content of heavy metals in ground and surface waters in the upper Sanna River catchment was initiated in 2013. The investigations were conducted in one of the most promising areas of potential shale gas extraction, in which the Frampol 1 test wellbore was drilled in 2012 (SE Poland, Roztocze Region). In the area of the wellbore, hydrochemical analyses of the waters of the river drainage zone were performed. Water was sampled from six objects representing soil water, porous groundwater, fissure-layer groundwater, and river water. The hydrological regime of groundwater and surface water was analysed based on data obtained from automatic recorders of water levels and results of periodic measurements of water flow. In 2013, water was sampled on a monthly basis for determination of the levels of Ba, Sr, Al, Fe, Mn, Zn, Cu, Cd, Co, Cr, Ni, As, V, Rb, Pb, Th, and U. The analysis results showed that the concentration of Sr was usually in the range of 100-400 A mu g/L, Fe 10-100 A mu g/L, Ba 10-40 A mu g/L, and Mn, Al, and Zn 1-10 A mu g/L. The concentration of the other metals generally did not exceed 1 A mu g/L. The concentrations of the elements analysed in the zone of drinking water intake were within the range specified by Polish and WHO standards. Significant differences were found in the metal content in the analysed waters; they were related to the water intake site, form of land management, and hydrometeorological conditions. The highest metal content was recorded in soil and river waters and the lowest in the spring waters of the main water-bearing horizon. At the current stage of the research, no impact of the Frampol 1 shale gas exploration wellbore on the metal content in the upper Sanna River catchment was found.
Detailed research on the content of heavy metals in ground and surface waters in the upper Sanna River catchment was initiated in 2013. The investigations were conducted in one of the most promising areas of potential shale gas extraction, in which the Frampol 1 test wellbore was drilled in 2012 (SE Poland, Roztocze Region). In the area of the wellbore, hydrochemical analyses of the waters of the river drainage zone were performed. Water was sampled from six objects representing soil water, porous groundwater, fissure-layer groundwater, and river water. The hydrological regime of groundwater and surface water was analysed based on data obtained from automatic recorders of water levels and results of periodic measurements of water flow. In 2013, water was sampled on a monthly basis for determination of the levels of Ba, Sr, Al, Fe, Mn, Zn, Cu, Cd, Co, Cr, Ni, As, V, Rb, Pb, Th, and U. The analysis results showed that the concentration of Sr was usually in the range of 100-400 A mu g/L, Fe 10-100 A mu g/L, Ba 10-40 A mu g/L, and Mn, Al, and Zn 1-10 A mu g/L. The concentration of the other metals generally did not exceed 1 A mu g/L. The concentrations of the elements analysed in the zone of drinking water intake were within the range specified by Polish and WHO standards. Significant differences were found in the metal content in the analysed waters; they were related to the water intake site, form of land management, and hydrometeorological conditions. The highest metal content was recorded in soil and river waters and the lowest in the spring waters of the main water-bearing horizon. At the current stage of the research, no impact of the Frampol 1 shale gas exploration wellbore on the metal content in the upper Sanna River catchment was found.
Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities
Drollette et al., October 2015
Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities
Brian D. Drollette, Kathrin Hoelzer, Nathaniel R. Warner, Thomas H. Darrah, Osman Karatum, Megan P. O’Connor, Robert K. Nelson, Loretta A. Fernandez, Christopher M. Reddy, Avner Vengosh, Robert B. Jackson, Martin Elsner, Desiree L. Plata (2015). Proceedings of the National Academy of Sciences, 201511474. 10.1073/pnas.1511474112
Abstract:
Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.
Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.
Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas streams
Austin et al., October 2015
Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas streams
Bradley J. Austin, Natalia Hardgrave, Ethan Inlander, Cory Gallipeau, Sally Entrekin, Michelle A. Evans-White (2015). Science of The Total Environment, 54-64. 10.1016/j.scitotenv.2015.05.030
Abstract:
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0–3.6 wells/km2) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes.
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0–3.6 wells/km2) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes.
A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region
Hildenbrand et al., June 2015
A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region
Zacariah Louis Hildenbrand, Doug D Carlton, Brian Fontenot, Jesse M. Meik, Jayme Walton, Josh Taylor, Jonathan Thacker, Stephanie Korlie, C. Phillip Shelor, Drew Henderson, Akinde Florence Kadjo, Corey Roelke, Paul F. Hudak, Taylour Burton, Hanadi S. Rifai, Kevin A. Schug (2015). Environmental Science & Technology, . 10.1021/acs.est.5b01526
Abstract:
The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques.
The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques.
Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale
Johnson et al., June 2015
Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale
Erica Johnson, Bradley J. Austin, Ethan Inlander, Cory Gallipeau, Michelle A. Evans-White, Sally Entrekin (2015). The Science of the Total Environment, 323-332. 10.1016/j.scitotenv.2015.05.027
Abstract:
Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development.
Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development.
Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development
Llewellyn et al., May 2015
Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development
Garth T. Llewellyn, Frank Dorman, J. L. Westland, D. Yoxtheimer, Paul Grieve, Todd Sowers, E. Humston-Fulmer, Susan L. Brantley (2015). Proceedings of the National Academy of Sciences, 201420279. 10.1073/pnas.1420279112
Abstract:
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.
Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development
Bern et al., May 2015
Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development
Carleton R. Bern, Melanie L. Clark, Travis S. Schmidt, JoAnn M. Holloway, Robert R. McDougal (2015). Journal of Hydrology, 123-136. 10.1016/j.jhydrol.2015.02.020
Abstract:
Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km(2) of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the-years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.
Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km(2) of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the-years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.
Stream Measurements Locate Thermogenic Methane Fluxes in Groundwater Discharge in an Area of Shale-Gas Development
Heilweil et al., April 2015
Stream Measurements Locate Thermogenic Methane Fluxes in Groundwater Discharge in an Area of Shale-Gas Development
Victor M. Heilweil, Paul L. Grieve, Scott A. Hynek, Susan L. Brantley, D. Kip Solomon, Dennis W. Risser (2015). Environmental Science & Technology, 4057-4065. 10.1021/es503882b
Abstract:
The environmental impacts of shale,gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply well's, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shalegas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 mu gL(-1) were observed, with four streams >= 5 mu g L-1. Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess grOundwatet contamination from shale-gas development.
The environmental impacts of shale,gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply well's, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shalegas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 mu gL(-1) were observed, with four streams >= 5 mu g L-1. Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess grOundwatet contamination from shale-gas development.
Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study
Nelson et al., April 2015
Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study
Andrew W. Nelson, Andrew W. Knight, Eric S. Eitrheim, Michael K. Schultz (2015). Journal of Environmental Radioactivity, 24-28. 10.1016/j.jenvrad.2015.01.004
Abstract:
Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities.
Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities.
Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction
Alawattegama et al., March 2015
Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction
Shyama K. Alawattegama, Tetiana Kondratyuk, Renee Krynock, Matthew Bricker, Jennifer K. Rutter, Daniel J. Bain, John F. Stolz (2015). Journal of Environmental Science and Health, Part A, 516-528. 10.1016/j.jenvrad.2015.01.004
Abstract:
Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.
Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.
Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development—Why existing national data sets cannot tell us what we would like to know
Bowen et al., January 2015
Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development—Why existing national data sets cannot tell us what we would like to know
Zachary H. Bowen, Gretchen P. Oelsner, Brian S. Cade, Tanya J. Gallegos, Aida M. Farag, David N. Mott, Christopher J. Potter, Peter J. Cinotto, Melanie L. Clark, William M. Kappel, Timothy M. Kresse, Cynthia P. Melcher, Suzanne S. Paschke, David D. Susong, Brian A. Varela (2015). Water Resources Research, 704-715. 10.1002/2014WR016382
Abstract:
Heightened concern regarding the potential effects of unconventional oil and gas development on regional water quality has emerged, but the few studies on this topic are limited in geographic scope. Here we evaluate the potential utility of national and publicly available water-quality data sets for addressing questions regarding unconventional oil and gas development. We used existing U.S. Geological Survey and U.S. Environmental Protection Agency data sets to increase understanding of the spatial distribution of unconventional oil and gas development in the U.S. and broadly assess surface water quality trends in these areas. Based on sample size limitations, we were able to estimate trends in specific conductance (SC) and chloride (Cl−) from 1970 to 2010 in 16% (n = 155) of the watersheds with unconventional oil and gas resources. We assessed these trends relative to spatiotemporal distributions of hydraulically fractured wells. Results from this limited analysis suggest no consistent and widespread trends in surface water quality for SC and Cl− in areas with increasing unconventional oil and gas development and highlight limitations of existing national databases for addressing questions regarding unconventional oil and gas development and water quality.
Heightened concern regarding the potential effects of unconventional oil and gas development on regional water quality has emerged, but the few studies on this topic are limited in geographic scope. Here we evaluate the potential utility of national and publicly available water-quality data sets for addressing questions regarding unconventional oil and gas development. We used existing U.S. Geological Survey and U.S. Environmental Protection Agency data sets to increase understanding of the spatial distribution of unconventional oil and gas development in the U.S. and broadly assess surface water quality trends in these areas. Based on sample size limitations, we were able to estimate trends in specific conductance (SC) and chloride (Cl−) from 1970 to 2010 in 16% (n = 155) of the watersheds with unconventional oil and gas resources. We assessed these trends relative to spatiotemporal distributions of hydraulically fractured wells. Results from this limited analysis suggest no consistent and widespread trends in surface water quality for SC and Cl− in areas with increasing unconventional oil and gas development and highlight limitations of existing national databases for addressing questions regarding unconventional oil and gas development and water quality.
Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development
Adam J. Pelak and Shikha Sharma, December 2014
Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development
Adam J. Pelak and Shikha Sharma (2014). Environmental Pollution, 91-100. 10.1016/j.envpol.2014.08.016
Abstract:
Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry.
Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry.
Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania
Trexler et al., November 2014
Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania
Ryan Trexler, Caroline Solomon, Colin J. Brislawn, Justin R. Wright, Abigail Rosenberger, Erin E. McClure, Alyssa M. Grube, Mark P. Peterson, Mehdi Keddache, Olivia U. Mason, Terry C. Hazen, Christopher J. Grant, Regina Lamendella (2014). Aquatic Microbiology, 522. 10.3389/fmicb.2014.00522
Abstract:
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.
New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations
Warner et al., October 2014
New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations
N. R. Warner, T. H. Darrah, R. B. Jackson, R. Millot, W. Kloppmann, A. Vengosh (2014). Environmental Science & Technology, . 10.1021/es5032135
Abstract:
Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25?31?) and δ7Li (6?10?) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (?0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.
Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25?31?) and δ7Li (6?10?) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (?0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.