This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: October 07, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Oil and natural gas development has mixed effects on the density and reproductive success of grassland songbirds
Ludlow et al., January 2015
Oil and natural gas development has mixed effects on the density and reproductive success of grassland songbirds
Sarah M. Ludlow, R. Mark Brigham, Stephen K. Davis (2015). The Condor, 64-75. 10.1650/CONDOR-14-79.1
Abstract:
Oil and natural gas development has increased dramatically in native grasslands over the past 25 years. Some grassland songbirds are less abundant in areas with oil and gas development, but the effects vary among species and geographically within a species' range. The reproductive consequences of nesting in areas with oil and gas development are unknown. We assessed how the density and reproductive success of five species of grassland songbird in Alberta, Canada, varied with distance to oil and gas wells, gravel roads, and trails, and cover of crested wheatgrass (Agropyron cristatum), an aggressive alien plant that often becomes established following anthropogenic disturbance. Crested wheatgrass cover had the greatest impact on the grassland songbird community. Sprague's Pipit (Anthus spragueii) nest survival decreased as the amount of crested wheatgrass increased. As crested wheatgrass cover increased from 0% to 60%, density of Savannah Sparrows (Passerculus sandwichensis) declined by 50%, but they fledged 25% more young from successful nests. Density of Savannah Sparrows was twice as high near wells, and fledging success was 40% higher compared with 700 m away. Distance to gravel roads did not influence the density or reproductive success of any species. Sprague's Pipits and Baird's Sparrows (Ammodramus bairdii) avoided nesting within 100 m of trails, and both species fledged fewer young from successful nests near trails. In contrast, Vesper Sparrows (Pooecetes gramineus) nested close to trails and fledged more young from successful nests near trails. Western Meadowlarks (Sturnella neglecta) were not strongly affected by any variable. Brown-headed Cowbird (Molothrus ater) abundance was three times higher in study plots with wells, although we detected no associated increase in brood parasitism. Our results indicate that the introduction and spread of crested wheatgrass and the creation of access trails to well pads have negative reproductive consequences for primary endemic species such as Sprague's Pipit and Baird's Sparrow, although these results do not extend to other grassland birds. The spread of crested wheatgrass and the disturbance of access trails could be reduced by directional drilling of multiple wells from a single well pad.
Oil and natural gas development has increased dramatically in native grasslands over the past 25 years. Some grassland songbirds are less abundant in areas with oil and gas development, but the effects vary among species and geographically within a species' range. The reproductive consequences of nesting in areas with oil and gas development are unknown. We assessed how the density and reproductive success of five species of grassland songbird in Alberta, Canada, varied with distance to oil and gas wells, gravel roads, and trails, and cover of crested wheatgrass (Agropyron cristatum), an aggressive alien plant that often becomes established following anthropogenic disturbance. Crested wheatgrass cover had the greatest impact on the grassland songbird community. Sprague's Pipit (Anthus spragueii) nest survival decreased as the amount of crested wheatgrass increased. As crested wheatgrass cover increased from 0% to 60%, density of Savannah Sparrows (Passerculus sandwichensis) declined by 50%, but they fledged 25% more young from successful nests. Density of Savannah Sparrows was twice as high near wells, and fledging success was 40% higher compared with 700 m away. Distance to gravel roads did not influence the density or reproductive success of any species. Sprague's Pipits and Baird's Sparrows (Ammodramus bairdii) avoided nesting within 100 m of trails, and both species fledged fewer young from successful nests near trails. In contrast, Vesper Sparrows (Pooecetes gramineus) nested close to trails and fledged more young from successful nests near trails. Western Meadowlarks (Sturnella neglecta) were not strongly affected by any variable. Brown-headed Cowbird (Molothrus ater) abundance was three times higher in study plots with wells, although we detected no associated increase in brood parasitism. Our results indicate that the introduction and spread of crested wheatgrass and the creation of access trails to well pads have negative reproductive consequences for primary endemic species such as Sprague's Pipit and Baird's Sparrow, although these results do not extend to other grassland birds. The spread of crested wheatgrass and the disturbance of access trails could be reduced by directional drilling of multiple wells from a single well pad.
Habitat Loss and Modification Due to Gas Development in the Fayetteville Shale
Moran et al., January 2015
Habitat Loss and Modification Due to Gas Development in the Fayetteville Shale
Matthew D. Moran, A. Brandon Cox, Rachel L. Wells, Chloe C. Benichou, Maureen R. McClung (2015). Environmental Management, 1276-1284. 10.1007/s00267-014-0440-6
Abstract:
Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2 % of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.
Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2 % of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.
Potential reduction in terrestrial salamander ranges associated with Marcellus shale development
Brand et al., December 2014
Potential reduction in terrestrial salamander ranges associated with Marcellus shale development
Adrianne B. Brand, Amber N. M. Wiewel, Evan H. Campbell Grant (2014). Biological Conservation, 233-240. 10.1016/j.biocon.2014.10.008
Abstract:
Natural gas production from the Marcellus shale is rapidly increasing in the northeastern United States. Most of the endemic terrestrial salamander species in the region are classified as ‘globally secure’ by the IUCN, primarily because much of their ranges include state- and federally protected lands, which have been presumed to be free from habitat loss. However, the proposed and ongoing development of the Marcellus gas resources may result in significant range restrictions for these and other terrestrial forest salamanders. To begin to address the gaps in our knowledge of the direct impacts of shale gas development, we developed occurrence models for five species of terrestrial plethodontid salamanders found largely within the Marcellus shale play. We predicted future Marcellus shale development under several scenarios. Under scenarios of 10,000, 20,000, and 50,000 new gas wells, we predict 4%, 8%, and 20% forest loss, respectively, within the play. Predictions of habitat loss vary among species, but in general, Plethodon electromorphus and Plethodon wehrlei are predicted to lose the greatest proportion of forested habitat within their ranges if future Marcellus development is based on characteristics of the shale play. If development is based on current well locations, Plethodon richmondi is predicted to lose the greatest proportion of habitat. Models showed high uncertainty in species’ ranges and emphasize the need for distribution data collected by widespread and repeated, randomized surveys.
Natural gas production from the Marcellus shale is rapidly increasing in the northeastern United States. Most of the endemic terrestrial salamander species in the region are classified as ‘globally secure’ by the IUCN, primarily because much of their ranges include state- and federally protected lands, which have been presumed to be free from habitat loss. However, the proposed and ongoing development of the Marcellus gas resources may result in significant range restrictions for these and other terrestrial forest salamanders. To begin to address the gaps in our knowledge of the direct impacts of shale gas development, we developed occurrence models for five species of terrestrial plethodontid salamanders found largely within the Marcellus shale play. We predicted future Marcellus shale development under several scenarios. Under scenarios of 10,000, 20,000, and 50,000 new gas wells, we predict 4%, 8%, and 20% forest loss, respectively, within the play. Predictions of habitat loss vary among species, but in general, Plethodon electromorphus and Plethodon wehrlei are predicted to lose the greatest proportion of forested habitat within their ranges if future Marcellus development is based on characteristics of the shale play. If development is based on current well locations, Plethodon richmondi is predicted to lose the greatest proportion of habitat. Models showed high uncertainty in species’ ranges and emphasize the need for distribution data collected by widespread and repeated, randomized surveys.
Ecological Risks of Shale Oil and Gas Development to Wildlife, Aquatic Resources and their Habitats
Brittingham et al., October 2014
Ecological Risks of Shale Oil and Gas Development to Wildlife, Aquatic Resources and their Habitats
Margaret C. Brittingham, Kelly O. Maloney, Aïda M. Farag, David D. Harper, Zachary H. Bowen (2014). Environmental Science & Technology, 11034-11047. 10.1021/es5020482
Abstract:
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Biotic impacts of energy development from shale: research priorities and knowledge gaps
Souther et al., August 2014
Biotic impacts of energy development from shale: research priorities and knowledge gaps
Sara Souther, Morgan W Tingley, Viorel D Popescu, David TS Hayman, Maureen E Ryan, Tabitha A Graves, Brett Hartl, Kimberly Terrell (2014). Frontiers in Ecology and the Environment, 330-338. 10.1890/130324
Abstract:
Although shale drilling operations for oil and natural gas have increased greatly in the past decade, few studies directly quantify the impacts of shale development on plants and wildlife. We evaluate knowledge gaps related to shale development and prioritize research needs using a quantitative framework that includes spatial and temporal extent, mitigation difficulty, and current level of understanding. Identified threats to biota from shale development include: surface and groundwater contamination; diminished stream flow; stream siltation; habitat loss and fragmentation; localized air, noise, and light pollution; climate change; and cumulative impacts. We find the highest research priorities to be probabilistic threats (underground chemical migration; contaminant release during storage, during disposal, or from accidents; and cumulative impacts), the study of which will require major scientific coordination among researchers, industry, and government decision makers. Taken together, our research prioritization outlines a way forward to better understand how energy development affects the natural world.
Although shale drilling operations for oil and natural gas have increased greatly in the past decade, few studies directly quantify the impacts of shale development on plants and wildlife. We evaluate knowledge gaps related to shale development and prioritize research needs using a quantitative framework that includes spatial and temporal extent, mitigation difficulty, and current level of understanding. Identified threats to biota from shale development include: surface and groundwater contamination; diminished stream flow; stream siltation; habitat loss and fragmentation; localized air, noise, and light pollution; climate change; and cumulative impacts. We find the highest research priorities to be probabilistic threats (underground chemical migration; contaminant release during storage, during disposal, or from accidents; and cumulative impacts), the study of which will require major scientific coordination among researchers, industry, and government decision makers. Taken together, our research prioritization outlines a way forward to better understand how energy development affects the natural world.
Effects of Livestock Grazing and Well Construction on Prairie Vegetation Structure Surrounding Shallow Natural Gas Wells
Koper et al., July 2014
Effects of Livestock Grazing and Well Construction on Prairie Vegetation Structure Surrounding Shallow Natural Gas Wells
N. Koper, K. Molloy, L. Leston, J. Yoo (2014). Environmental Management, 1-8. 10.1007/s00267-014-0344-5
Abstract:
Short and sparse vegetation near shallow gas wells has generally been attributed to residual effects from well construction, but other mechanisms might also explain these trends. We evaluated effects of distance to shallow gas wells on vegetation and bare ground in mixed-grass prairies in southern Alberta, Canada, from 2010 to 2011. We then tested three hypotheses to explain why we found shorter vegetation and more bare ground near wells, using cattle fecal pat transects from 2012, and our vegetation quadrats. We evaluated whether empirical evidence suggested that observed patterns were driven by (1) higher abundance of crested wheatgrass (Agropyron cristatum) near wells, (2) residual effects of well construction, or (3) attraction of livestock to wells. Crested wheatgrass occurrence was higher near wells, but this did not explain effects of wells on vegetation structure. Correlations between distance to wells and litter depth were the highest near newer wells, providing support for the construction hypothesis. However, effects of distance to wells on other vegetation metrics did not decline as time since well construction increased, suggesting that other mechanisms explained observed edge effects. Cattle abundance was substantially higher near wells, and this effect corresponded with changes in habitat structure. Our results suggest that both residual effects of well construction and cattle behavior may explain effects of shallow gas wells on habitat structure in mixed-grass prairies, and thus, to be effective, mitigation strategies must address both mechanisms.
Short and sparse vegetation near shallow gas wells has generally been attributed to residual effects from well construction, but other mechanisms might also explain these trends. We evaluated effects of distance to shallow gas wells on vegetation and bare ground in mixed-grass prairies in southern Alberta, Canada, from 2010 to 2011. We then tested three hypotheses to explain why we found shorter vegetation and more bare ground near wells, using cattle fecal pat transects from 2012, and our vegetation quadrats. We evaluated whether empirical evidence suggested that observed patterns were driven by (1) higher abundance of crested wheatgrass (Agropyron cristatum) near wells, (2) residual effects of well construction, or (3) attraction of livestock to wells. Crested wheatgrass occurrence was higher near wells, but this did not explain effects of wells on vegetation structure. Correlations between distance to wells and litter depth were the highest near newer wells, providing support for the construction hypothesis. However, effects of distance to wells on other vegetation metrics did not decline as time since well construction increased, suggesting that other mechanisms explained observed edge effects. Cattle abundance was substantially higher near wells, and this effect corresponded with changes in habitat structure. Our results suggest that both residual effects of well construction and cattle behavior may explain effects of shallow gas wells on habitat structure in mixed-grass prairies, and thus, to be effective, mitigation strategies must address both mechanisms.
Seasonal Resource Selection and Distributional Response by Elk to Development of a Natural Gas Field
Buchanan et al., July 2014
Seasonal Resource Selection and Distributional Response by Elk to Development of a Natural Gas Field
Clay B. Buchanan, Jeffrey L. Beck, Thomas E. Bills, Scott N. Miller (2014). Rangeland Ecology & Management, 369-379. 10.2111/REM-D-13-00136.1
Abstract:
Global energy demand is predicted to increase dramatically, suggesting the need to understand the role of disturbance from energy development better and to develop more efficient conservation strategies for affected wildlife populations. We evaluated elk (Cervus elaphus) response to disturbance associated with natural gas development in summer and winter, including shifts in resource selection and concomitant distribution. We collected elk locations prior to (1992–1995) and during (2008–2010) coal bed natural gas (CBNG) development in the ∼ 498-km2 Fortification Creek Area (FCA) of northeastern Wyoming, USA, where approximately 700 CBNG wells and 542 km of collector, local, and resource roads were developed from 2000 through 2010. We developed resource selection functions for summer and winter using coordinate data from VHF-collared female elk prior to CBNG development and similar location data from GPS-collared female elk during CBNG development to assess spatial selection shifts. By pooling across all locations we created population level models for each time period (e.g., pre- and during development) and incorporated individual variation through bootstrapping standard errors for parameter estimates. Comparison of elk resource selection prior to and during natural gas development demonstrated behavioral and distributional shifts whereby during development, elk demonstrated a higher propensity to use distance and escape cover to minimize exposure to roads. Specifically, during-development elk selected areas with greater Rocky Mountain juniper (Juniperus scopulorum Sarg.) cover, increased terrain ruggedness, and farther from CBNG roads than prior to development. Elk distributional changes resulting from avoidance behavior led to a loss of high-use areas by 43.1% and 50.2% in summer and winter, respectively. We suggest reducing traffic, protecting woody escape cover, and maintaining refugia within the energy-development footprint to promote persistence of elk within energy fields.
Global energy demand is predicted to increase dramatically, suggesting the need to understand the role of disturbance from energy development better and to develop more efficient conservation strategies for affected wildlife populations. We evaluated elk (Cervus elaphus) response to disturbance associated with natural gas development in summer and winter, including shifts in resource selection and concomitant distribution. We collected elk locations prior to (1992–1995) and during (2008–2010) coal bed natural gas (CBNG) development in the ∼ 498-km2 Fortification Creek Area (FCA) of northeastern Wyoming, USA, where approximately 700 CBNG wells and 542 km of collector, local, and resource roads were developed from 2000 through 2010. We developed resource selection functions for summer and winter using coordinate data from VHF-collared female elk prior to CBNG development and similar location data from GPS-collared female elk during CBNG development to assess spatial selection shifts. By pooling across all locations we created population level models for each time period (e.g., pre- and during development) and incorporated individual variation through bootstrapping standard errors for parameter estimates. Comparison of elk resource selection prior to and during natural gas development demonstrated behavioral and distributional shifts whereby during development, elk demonstrated a higher propensity to use distance and escape cover to minimize exposure to roads. Specifically, during-development elk selected areas with greater Rocky Mountain juniper (Juniperus scopulorum Sarg.) cover, increased terrain ruggedness, and farther from CBNG roads than prior to development. Elk distributional changes resulting from avoidance behavior led to a loss of high-use areas by 43.1% and 50.2% in summer and winter, respectively. We suggest reducing traffic, protecting woody escape cover, and maintaining refugia within the energy-development footprint to promote persistence of elk within energy fields.
A Framework to Predict the Impacts of Shale Gas Infrastructures on the Forest Fragmentation of an Agroforest Region
Racicot et al., May 2014
A Framework to Predict the Impacts of Shale Gas Infrastructures on the Forest Fragmentation of an Agroforest Region
Alexandre Racicot, Véronique Babin-Roussel, Jean-François Dauphinais, Jean-Sébastien Joly, Pascal Noël, Claude Lavoie (2014). Environmental Management, 1023-1033. 10.1007/s00267-014-0250-x
Abstract:
We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13–21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.
We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13–21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.
Grassland songbirds exhibit variable responses to the proximity and density of natural gas wells
Holly J. Kalyn Bogard and Stephen K. Davis, April 2014
Grassland songbirds exhibit variable responses to the proximity and density of natural gas wells
Holly J. Kalyn Bogard and Stephen K. Davis (2014). The Journal of Wildlife Management, 471-482. 10.1002/jwmg.684
Abstract:
Cultivation of native prairie was likely the primary cause of historical declines of grassland bird populations in North America, but the increase in natural gas development may be exacerbating those declines through habitat loss and degradation. We quantified the abundance of grassland songbirds and vegetation structure across a gradient of natural gas well densities to determine the extent to which density and proximity of gas wells influence songbird abundance. In 2008 and 2009, we conducted 1,258 point counts on 105 native grassland parcels (1.6 km2/parcel) at varying distances from natural gas wells and with varying gas well densities (0–25 per 1.6 km2). We found that vegetation structure influenced bird abundance more strongly than natural gas well proximity or density for all but 1 species and that the response of grassland songbirds to natural gas well density and proximity varied among species and regions. Sprague's pipit (Anthus spragueii) and Baird's sparrow (Ammodramus bairdii) abundance was not influenced by natural gas well proximity or density. Grasshopper sparrow (Ammodramus savannarum), McCown's longspur (Rhynchophanes mccownii), and chestnut-collared longspur (Calcarius ornatus) abundance was lower near gas wells, but both longspur species were also more abundant in areas with greater densities of gas wells. Horned lark (Eremophilus alpestris) abundance increased with well density in our northern study site. Savannah sparrow (Passerculus sandwichensis) abundance was higher near gas wells, but only in areas where well density was ≤9 wells/1.6 km2. We suggest that land managers and industry implement remediation activities that encourage vegetative re-growth, thus reducing the potential interactive relationship between natural gas development and changes in vegetation structure. © 2014 The Wildlife Society.
Cultivation of native prairie was likely the primary cause of historical declines of grassland bird populations in North America, but the increase in natural gas development may be exacerbating those declines through habitat loss and degradation. We quantified the abundance of grassland songbirds and vegetation structure across a gradient of natural gas well densities to determine the extent to which density and proximity of gas wells influence songbird abundance. In 2008 and 2009, we conducted 1,258 point counts on 105 native grassland parcels (1.6 km2/parcel) at varying distances from natural gas wells and with varying gas well densities (0–25 per 1.6 km2). We found that vegetation structure influenced bird abundance more strongly than natural gas well proximity or density for all but 1 species and that the response of grassland songbirds to natural gas well density and proximity varied among species and regions. Sprague's pipit (Anthus spragueii) and Baird's sparrow (Ammodramus bairdii) abundance was not influenced by natural gas well proximity or density. Grasshopper sparrow (Ammodramus savannarum), McCown's longspur (Rhynchophanes mccownii), and chestnut-collared longspur (Calcarius ornatus) abundance was lower near gas wells, but both longspur species were also more abundant in areas with greater densities of gas wells. Horned lark (Eremophilus alpestris) abundance increased with well density in our northern study site. Savannah sparrow (Passerculus sandwichensis) abundance was higher near gas wells, but only in areas where well density was ≤9 wells/1.6 km2. We suggest that land managers and industry implement remediation activities that encourage vegetative re-growth, thus reducing the potential interactive relationship between natural gas development and changes in vegetation structure. © 2014 The Wildlife Society.
Shale Gas, Wind and Water: Assessing the Potential Cumulative Impacts of Energy Development on Ecosystem Services within the Marcellus Play
Jeffrey S. Evans and Joseph M. Kiesecker, February 2014
Shale Gas, Wind and Water: Assessing the Potential Cumulative Impacts of Energy Development on Ecosystem Services within the Marcellus Play
Jeffrey S. Evans and Joseph M. Kiesecker (2014). PLoS ONE, e89210. 10.1371/journal.pone.0089210
Abstract:
Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km2 in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central Appalachians. We used these predictions and published projections to model future energy build-out scenarios to quantify future potential impacts on surface drinking water. Our analysis predicts up to 106,004 new wells and 10,798 new wind turbines resulting up to 535,023 ha of impervious surface (3% of the study area) and upwards of 447,134 ha of impacted forest (2% of the study area). In light of this new energy future, mitigating the impacts of energy development will be one of the major challenges in the coming decades.
Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km2 in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central Appalachians. We used these predictions and published projections to model future energy build-out scenarios to quantify future potential impacts on surface drinking water. Our analysis predicts up to 106,004 new wells and 10,798 new wind turbines resulting up to 535,023 ha of impervious surface (3% of the study area) and upwards of 447,134 ha of impacted forest (2% of the study area). In light of this new energy future, mitigating the impacts of energy development will be one of the major challenges in the coming decades.
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting
Jones et al., January 2014
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting
Isabel L. Jones, Joseph W. Bull, Eleanor J. Milner-Gulland, Alexander V. Esipov, Kenwyn B. Suttle (2014). Ecology and Evolution, 79-90. 10.1002/ece3.884
Abstract:
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is biodiversity offsetting (wherein biodiversity impacted is replaced through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of linear infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with hub infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 +/- 19km(2) across the Ustyurt (total similar to 100,000km(2)), 37 +/- 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is biodiversity offsetting (wherein biodiversity impacted is replaced through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of linear infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with hub infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 +/- 19km(2) across the Ustyurt (total similar to 100,000km(2)), 37 +/- 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA
Qingmin Meng, January 2014
Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA
Qingmin Meng (2014). Landscape and Urban Planning, 109-116. 10.1016/j.landurbplan.2013.09.005
Abstract:
Natural gas fracking pad sites, as a type of industrial landscape, have been blooming up in Marcellus Shale region especially within the State of Pennsylvania in the last few years. However, no study has explored the driving landscape and environmental variables of fracking pad sites, and how gas fracking pads as a specific landscape spread out in the Marcellus Shale region. Using the Washington County, Pennsylvania, USA as the study area, this paper proposes a novel GIS landscape modeling approach to model the relationships between landscape variables and natural gas fracking pad sites. The impacts of significant landscape variables on natural gas fracking pad sites are assessed. Statistic diagnostics of spatial logistic regression modeling find significant landscape variables of elevation, slope, and land use land cover. Higher elevation will result in higher probability to be fracking pad sites, while deeper slopes will result in a lower probability to be fracking pad sites. Natural gas fracking pad sites do not randomly intrude the initial landscapes, while land use land cover experiences different invasive risks of natural gas fracking, and in the order of open water, developed land, barren land, forest land, shrub land, grassland, agriculture land, and wetland, the probability of being intruded by natural gas fracking sites increases at 3.76%. This landscape model finally is used to predict natural gas fracking pad sites. The predicted spatial distribution provides significant insight for landscape and natural resources regulation, land use administration, transportation and urban planning, and ecosystem and environment conservations.
Natural gas fracking pad sites, as a type of industrial landscape, have been blooming up in Marcellus Shale region especially within the State of Pennsylvania in the last few years. However, no study has explored the driving landscape and environmental variables of fracking pad sites, and how gas fracking pads as a specific landscape spread out in the Marcellus Shale region. Using the Washington County, Pennsylvania, USA as the study area, this paper proposes a novel GIS landscape modeling approach to model the relationships between landscape variables and natural gas fracking pad sites. The impacts of significant landscape variables on natural gas fracking pad sites are assessed. Statistic diagnostics of spatial logistic regression modeling find significant landscape variables of elevation, slope, and land use land cover. Higher elevation will result in higher probability to be fracking pad sites, while deeper slopes will result in a lower probability to be fracking pad sites. Natural gas fracking pad sites do not randomly intrude the initial landscapes, while land use land cover experiences different invasive risks of natural gas fracking, and in the order of open water, developed land, barren land, forest land, shrub land, grassland, agriculture land, and wetland, the probability of being intruded by natural gas fracking sites increases at 3.76%. This landscape model finally is used to predict natural gas fracking pad sites. The predicted spatial distribution provides significant insight for landscape and natural resources regulation, land use administration, transportation and urban planning, and ecosystem and environment conservations.
Comparing the ecological impacts of wind and oil & gas development: a landscape scale assessment
Nathan F Jones and Liba Pejchar, November 2013
Comparing the ecological impacts of wind and oil & gas development: a landscape scale assessment
Nathan F Jones and Liba Pejchar (2013). PloS one, e81391. 10.1371/journal.pone.0081391
Abstract:
Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society's demand for energy.
Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society's demand for energy.
Histopathological Analysis of Fish from Acorn Fork Creek, Kentucky, Exposed to Hydraulic Fracturing Fluid Releases
Diana M. Papoulias and Anthony L. Velasco, August 2013
Histopathological Analysis of Fish from Acorn Fork Creek, Kentucky, Exposed to Hydraulic Fracturing Fluid Releases
Diana M. Papoulias and Anthony L. Velasco (2013). Southeastern Naturalist, 92-111. 10.1656/058.012.s413
Abstract:
Fracking fluids were released into Acorn Fork, KY, a designated Outstanding State Resource Water, and habitat for the threatened Chrosomus cumberlandensis (Blackside Dace). As a result, stream pH dropped to 5.6 and stream conductivity increased to 35,000 µS/cm, and aquatic invertebrates and fish were killed or distressed. The objective of this study was to describe post-fracking water quality in Acorn Fork and evaluate if the changes in water quality could have extirpated Blackside Dace populations. Semotilus atromaculatus (Creek Chub) and Lepomis cyanellus (Green Sunfish) were collected from Acorn Fork a month after fracking in lieu of unavailable Blackside Dace. Tissues were histologically analyzed for indicators of stress and percent of fish with lesions. Fish exposed to affected Acorn Fork waters showed general signs of stress and had a higher incidence of gill lesions than unexposed reference fish. Gill lesions observed were consistent with exposure to low pH and toxic concentrations of heavy metals. Gill uptake of aluminum and iron was demonstrated at sites with correspondingly high concentrations of these metals. The abrupt and persistent changes in post-fracking water quality resulted in toxic conditions that could have been deleterious to Blackside Dace health and survival.
Fracking fluids were released into Acorn Fork, KY, a designated Outstanding State Resource Water, and habitat for the threatened Chrosomus cumberlandensis (Blackside Dace). As a result, stream pH dropped to 5.6 and stream conductivity increased to 35,000 µS/cm, and aquatic invertebrates and fish were killed or distressed. The objective of this study was to describe post-fracking water quality in Acorn Fork and evaluate if the changes in water quality could have extirpated Blackside Dace populations. Semotilus atromaculatus (Creek Chub) and Lepomis cyanellus (Green Sunfish) were collected from Acorn Fork a month after fracking in lieu of unavailable Blackside Dace. Tissues were histologically analyzed for indicators of stress and percent of fish with lesions. Fish exposed to affected Acorn Fork waters showed general signs of stress and had a higher incidence of gill lesions than unexposed reference fish. Gill lesions observed were consistent with exposure to low pH and toxic concentrations of heavy metals. Gill uptake of aluminum and iron was demonstrated at sites with correspondingly high concentrations of these metals. The abrupt and persistent changes in post-fracking water quality resulted in toxic conditions that could have been deleterious to Blackside Dace health and survival.
Accumulated metals and metallothionein expression in organs of hares (Lepus europaeus Pallas) within natural gas fields of Podravina, Croatia
Tota et al., May 2013
Accumulated metals and metallothionein expression in organs of hares (Lepus europaeus Pallas) within natural gas fields of Podravina, Croatia
Marin Tota, Hrvoje Jakovac, Zdravko Špirić, Emil Srebočan, Čedomila Milin (2013). Archives of Environmental & Occupational Health, . 10.1080/19338244.2013.787966
Abstract:
Abstract Environmental impact of natural gas facility near Molve (Podravina, Croatia) was assessed using hares (Lepus europaeus Pallas) as biomonitors. Elevated levels of heavy metals in the environment lead to their accumulation in different tissues of hares. We have tested accumulation and distribution of several metals in hares liver, kidney and muscle tissue. The accumulation of copper in hares liver and kidneys with concomitant decrease of zinc was observed in animals from Podravina region as opposed to control group of animals (Island Krk, Croatia). Secondly, the expression of metallothioneins was assessed because of their crucial role in metal homeostasis. Observed elevation of metallothionein expression in tested organs emphasizes the possible prolonged negative effects of heavy metals in the surroundings as well as a state of oxidative stress in animals. Further monitoring of the area is necessary for better control of hydrocarbon processing to diminish the possible negative environmental effects.
Abstract Environmental impact of natural gas facility near Molve (Podravina, Croatia) was assessed using hares (Lepus europaeus Pallas) as biomonitors. Elevated levels of heavy metals in the environment lead to their accumulation in different tissues of hares. We have tested accumulation and distribution of several metals in hares liver, kidney and muscle tissue. The accumulation of copper in hares liver and kidneys with concomitant decrease of zinc was observed in animals from Podravina region as opposed to control group of animals (Island Krk, Croatia). Secondly, the expression of metallothioneins was assessed because of their crucial role in metal homeostasis. Observed elevation of metallothionein expression in tested organs emphasizes the possible prolonged negative effects of heavy metals in the surroundings as well as a state of oxidative stress in animals. Further monitoring of the area is necessary for better control of hydrocarbon processing to diminish the possible negative environmental effects.
Migrating Mule Deer: Effects of Anthropogenically Altered Landscapes
Lendrum et al., May 2013
Migrating Mule Deer: Effects of Anthropogenically Altered Landscapes
Patrick E. Lendrum, Charles R. , Jr Anderson, Kevin L. Monteith, Jonathan A. Jenks, R. Terry Bowyer (2013). PLoS ONE, e64548. 10.1371/journal.pone.0064548
Abstract:
BackgroundMigration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue.Methodology/Principal FindingsWe studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus) in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008–2010.Conclusions/SignificanceTiming of spring migration was related to winter weather (particularly snow depth) and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas, especially where mule deer migrate over longer distances or for greater durations.
BackgroundMigration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue.Methodology/Principal FindingsWe studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus) in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008–2010.Conclusions/SignificanceTiming of spring migration was related to winter weather (particularly snow depth) and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas, especially where mule deer migrate over longer distances or for greater durations.
Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales
Erik Kiviat, May 2013
Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales
Erik Kiviat (2013). Annals of the New York Academy of Sciences, 1-14. 10.1111/nyas.12146
Abstract:
High-volume horizontal hydraulic fracturing (HVHHF) for mining natural gas from the Marcellus and Utica shales is widespread in Pennsylvania and potentially throughout approximately 280,000 km(2) of the Appalachian Basin. Physical and chemical impacts of HVHHF include pollution by toxic synthetic chemicals, salt, and radionuclides, landscape fragmentation by wellpads, pipelines, and roads, alteration of stream and wetland hydrology, and increased truck traffic. Despite concerns about human health, there has been little study of the impacts on habitats and biota. Taxa and guilds potentially sensitive to HVHHF impacts include freshwater organisms (e.g., brook trout, freshwater mussels), fragmentation-sensitive biota (e.g., forest-interior breeding birds, forest orchids), and species with restricted geographic ranges (e.g., Wehrle's salamander, tongue-tied minnow). Impacts are potentially serious due to the rapid development of HVHHF over a large region.
High-volume horizontal hydraulic fracturing (HVHHF) for mining natural gas from the Marcellus and Utica shales is widespread in Pennsylvania and potentially throughout approximately 280,000 km(2) of the Appalachian Basin. Physical and chemical impacts of HVHHF include pollution by toxic synthetic chemicals, salt, and radionuclides, landscape fragmentation by wellpads, pipelines, and roads, alteration of stream and wetland hydrology, and increased truck traffic. Despite concerns about human health, there has been little study of the impacts on habitats and biota. Taxa and guilds potentially sensitive to HVHHF impacts include freshwater organisms (e.g., brook trout, freshwater mussels), fragmentation-sensitive biota (e.g., forest-interior breeding birds, forest orchids), and species with restricted geographic ranges (e.g., Wehrle's salamander, tongue-tied minnow). Impacts are potentially serious due to the rapid development of HVHHF over a large region.
Does Spatial Resolution Matter? A Multi-scale Comparison of Object-based and Pixel-based Methods for Detecting Change Associated with Gas Well Drilling Operations
Baker et al., March 2013
Does Spatial Resolution Matter? A Multi-scale Comparison of Object-based and Pixel-based Methods for Detecting Change Associated with Gas Well Drilling Operations
BenjaminA. Baker, TimothyA. Warner, JamisonF. Conley, BrendenE. McNeil (2013). Int. J. Remote Sens., 1633–1651. 10.1080/01431161.2012.724540
Abstract:
An implicit assumption of the geographic object-based image analysis GEOBIA literature is that GEOBIA is more accurate than pixel-based methods for high spatial resolution image classification, but that the benefits of using GEOBIA are likely to be lower when moderate resolution data are employed. This study investigates this assumption within the context of a case study of mapping forest clearings associated with drilling for natural gas. The forest clearings varied from 0.2 to 9.2 ha, with an average size of 0.9 ha. National Aerial Imagery Program data from 2004 to 2010, with 1 m pixel size, were resampled through pixel aggregation to generate imagery with 2, 5, 15, and 30 m pixel sizes. The imagery for each date and at each of the five spatial resolutions was classified into Forest and Non-forest classes, using both maximum likelihood and GEOBIA. Change maps were generated through overlay of the classified images. Accuracy evaluation was carried out using a random sampling approach. The 1 m GEOBIA classification was found to be significantly more accurate than the GEOBIA and per-pixel classifications with either 15 or 30 m resolution. However, at any one particular pixel size e.g. 1 m, the pixel-based classification was not statistically different from the GEOBIA classification. In addition, for the specific class of forest clearings, accuracy varied with the spatial resolution of the imagery. As the pixel size coarsened from 1 to 30 m, accuracy for the per-pixel method increased from 59% to 80%, but decreased from 71% to 58% for the GEOBIA classification. In summary, for studying the impact of forest clearing associated with gas extraction, GEOBIA is more accurate than pixel-based methods, but only at the very finest resolution of 1 m. For coarser spatial resolutions, per-pixel methods are not statistically different from GEOBIA.
An implicit assumption of the geographic object-based image analysis GEOBIA literature is that GEOBIA is more accurate than pixel-based methods for high spatial resolution image classification, but that the benefits of using GEOBIA are likely to be lower when moderate resolution data are employed. This study investigates this assumption within the context of a case study of mapping forest clearings associated with drilling for natural gas. The forest clearings varied from 0.2 to 9.2 ha, with an average size of 0.9 ha. National Aerial Imagery Program data from 2004 to 2010, with 1 m pixel size, were resampled through pixel aggregation to generate imagery with 2, 5, 15, and 30 m pixel sizes. The imagery for each date and at each of the five spatial resolutions was classified into Forest and Non-forest classes, using both maximum likelihood and GEOBIA. Change maps were generated through overlay of the classified images. Accuracy evaluation was carried out using a random sampling approach. The 1 m GEOBIA classification was found to be significantly more accurate than the GEOBIA and per-pixel classifications with either 15 or 30 m resolution. However, at any one particular pixel size e.g. 1 m, the pixel-based classification was not statistically different from the GEOBIA classification. In addition, for the specific class of forest clearings, accuracy varied with the spatial resolution of the imagery. As the pixel size coarsened from 1 to 30 m, accuracy for the per-pixel method increased from 59% to 80%, but decreased from 71% to 58% for the GEOBIA classification. In summary, for studying the impact of forest clearing associated with gas extraction, GEOBIA is more accurate than pixel-based methods, but only at the very finest resolution of 1 m. For coarser spatial resolutions, per-pixel methods are not statistically different from GEOBIA.
Hydraulic Fracturing and Brook Trout Habitat in the Marcellus Shale Region: Potential Impacts and Research Needs
Maya Weltman-Fahs and Jason M. Taylor, February 2013
Hydraulic Fracturing and Brook Trout Habitat in the Marcellus Shale Region: Potential Impacts and Research Needs
Maya Weltman-Fahs and Jason M. Taylor (2013). Fisheries, 4-15. 10.1080/03632415.2013.750112
Abstract:
Expansion of natural gas drilling into the Marcellus Shale formation is an emerging threat to the conservation and restoration of native brook trout (Salvelinus fontinalis) populations. Improved drilling and extraction technologies (horizontal drilling and hydraulic fracturing) have led to rapid and extensive natural gas development in areas overlying the Marcellus Shale. The expansion of hydraulic fracturing poses multiple threats to surface waters, which can be tied to key ecological attributes that limit brook trout populations. Here, we expand current conceptual models to identify three potential pathways of risk between surface water threats associated with increased natural gas development and life history attributes of brook trout: hydrological, physical, and chemical. Our goal is to highlight research needs for fisheries scientists and work in conjunction with resource managers to influence the development of strategies that will preserve brook trout habitat and address Marcellus Shale gas development threats to eastern North America's only native stream salmonid.
Expansion of natural gas drilling into the Marcellus Shale formation is an emerging threat to the conservation and restoration of native brook trout (Salvelinus fontinalis) populations. Improved drilling and extraction technologies (horizontal drilling and hydraulic fracturing) have led to rapid and extensive natural gas development in areas overlying the Marcellus Shale. The expansion of hydraulic fracturing poses multiple threats to surface waters, which can be tied to key ecological attributes that limit brook trout populations. Here, we expand current conceptual models to identify three potential pathways of risk between surface water threats associated with increased natural gas development and life history attributes of brook trout: hydrological, physical, and chemical. Our goal is to highlight research needs for fisheries scientists and work in conjunction with resource managers to influence the development of strategies that will preserve brook trout habitat and address Marcellus Shale gas development threats to eastern North America's only native stream salmonid.
Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates
Wang et al., January 2013
Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates
Ning Wang, Christopher G. Ingersoll, James L. Kunz, William G. Brumbaugh, Cindy M. Kane, R. Brian Evans, Steven Alexander, Craig Walker, Steve Bakaletz (2013). Environmental Toxicology and Chemistry, 207–221. 10.1002/etc.2032
Abstract:
Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels. Environ. Toxicol. Chem. 2013;32:207–221. © 2012 SETAC
Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels. Environ. Toxicol. Chem. 2013;32:207–221. © 2012 SETAC
Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects
Smith et al., December 2012
Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects
David R. Smith, Craig D. Snyder, Nathaniel P. Hitt, John A. Young, Stephen P. Faulkner (2012). Environmental Practice, 366-381. 10.1017/S1466046612000397
Abstract:
Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.Environmental Practice 14:1–16 (2012)
Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.Environmental Practice 14:1–16 (2012)
Hydraulic Fracturing Threats to Species with Restricted Geographic Ranges in the Eastern United States
Jennifer L. Gillen and Erik Kiviat, December 2012
Hydraulic Fracturing Threats to Species with Restricted Geographic Ranges in the Eastern United States
Jennifer L. Gillen and Erik Kiviat (2012). Environmental Practice, 320-331. 10.1017/S1466046612000361
Abstract:
High-volume horizontal hydraulic fracturing (fracking) is a new technology that poses many threats to biodiversity. Species that have small geographic ranges and a large overlap with the extensively industrializing Marcellus and Utica shale-gas region are vulnerable to environmental impacts of fracking, including salinization and forest fragmentation. We reviewed the ranges and ecological requirements of 15 species (1 mammal, 8 salamanders, 2 fishes, 1 butterfly, and 3 vascular plants), with 36%–100% range overlaps with the Marcellus-Utica region to determine their susceptibility to shale-gas activities. Most of these species are sensitive to forest fragmentation and loss or to degradation of water quality, two notable impacts of fracking. Moreover, most are rare or poorly studied and should be targeted for research and management to prevent their reduction, extirpation, or extinction from human-caused impacts.Environmental Practice 14:1–12 (2012)
High-volume horizontal hydraulic fracturing (fracking) is a new technology that poses many threats to biodiversity. Species that have small geographic ranges and a large overlap with the extensively industrializing Marcellus and Utica shale-gas region are vulnerable to environmental impacts of fracking, including salinization and forest fragmentation. We reviewed the ranges and ecological requirements of 15 species (1 mammal, 8 salamanders, 2 fishes, 1 butterfly, and 3 vascular plants), with 36%–100% range overlaps with the Marcellus-Utica region to determine their susceptibility to shale-gas activities. Most of these species are sensitive to forest fragmentation and loss or to degradation of water quality, two notable impacts of fracking. Moreover, most are rare or poorly studied and should be targeted for research and management to prevent their reduction, extirpation, or extinction from human-caused impacts.Environmental Practice 14:1–12 (2012)
Topographic and Soil Constraints to Shale-Gas Development in the Northcentral Appalachians
P. J. Drohan and M. Brittingham, September 2012
Topographic and Soil Constraints to Shale-Gas Development in the Northcentral Appalachians
P. J. Drohan and M. Brittingham (2012). Soil Science Society of America Journal, 1696. 10.2136/sssaj2012.0087
Abstract:
Worldwide, shale-gas development is becoming a feasible extraction practice and the northern Allegheny Plateau, USA is a region experiencing such development. We used a GIS to investigate topographic and soil characteristics across existing and permitted shale-gas pads in Pennsylvania, which could affect infrastructure development and reclamation success. Results from this analysis, while regionally specific, can contribute knowledge for successful management of all shale-gas extraction. Approximately 60% of existing and permitted pads occur on slopes at risk to some excess surface water movement and local erosion. Pad development occurs >90% of the time on backslope landscape positions and 37% of the time on soils with a fragipan subsoil horizon, which can contribute to soil drainage problems. Most pads (73%) are developed on soils without drainage problems, but 21% are on potentially wet soils. Shale-gas development related to one pad typically disturbed a 0.1- to 20.5-ha area (mean of 2.7 ha). Aerial photography analysis from 2010 indicates a small proportion of pads have undergone restoration, and restored pads were recontoured and planted with grass. Agricultural lands restored after infrastructure development were found to return to some crop production. Assuming perfect site reclamation, grass, herbaceous, hardwood, and conifer establishment appears suitable across the range of existing and permitted pads; however revegetation success may be limited by poor soil reclamation.
Worldwide, shale-gas development is becoming a feasible extraction practice and the northern Allegheny Plateau, USA is a region experiencing such development. We used a GIS to investigate topographic and soil characteristics across existing and permitted shale-gas pads in Pennsylvania, which could affect infrastructure development and reclamation success. Results from this analysis, while regionally specific, can contribute knowledge for successful management of all shale-gas extraction. Approximately 60% of existing and permitted pads occur on slopes at risk to some excess surface water movement and local erosion. Pad development occurs >90% of the time on backslope landscape positions and 37% of the time on soils with a fragipan subsoil horizon, which can contribute to soil drainage problems. Most pads (73%) are developed on soils without drainage problems, but 21% are on potentially wet soils. Shale-gas development related to one pad typically disturbed a 0.1- to 20.5-ha area (mean of 2.7 ha). Aerial photography analysis from 2010 indicates a small proportion of pads have undergone restoration, and restored pads were recontoured and planted with grass. Agricultural lands restored after infrastructure development were found to return to some crop production. Assuming perfect site reclamation, grass, herbaceous, hardwood, and conifer establishment appears suitable across the range of existing and permitted pads; however revegetation success may be limited by poor soil reclamation.
Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development
Lendrum et al., September 2012
Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development
Patrick E. Lendrum, Charles R. Anderson, Ryan A. Long, John G. Kie, R. Terry Bowyer (2012). Ecosphere, 1-19. 10.1890/ES12-00165.1
Abstract:
The disruption of traditional migratory routes by anthropogenic disturbances has shifted patterns of resource selection by many species, and in some instances has caused populations to decline. Moreover, in recent decades populations of mule deer (Odocoileus hemionus) have declined throughout much of their historic range in the western United States. We used resource-selection functions to determine if the presence of natural-gas development altered patterns of resource selection by migrating mule deer. We compared spring migration routes of adult female mule deer fitted with GPS collars (n = 167) among four study areas that had varying degrees of natural-gas development from 2008 to 2010 in the Piceance Basin of northwest Colorado, USA. Mule deer migrating through the most developed area had longer step lengths (straight-line distance between successive GPS locations) compared with deer in less-developed areas. Additionally, deer migrating through the most developed study areas tended to select for habitat types that provided greater amounts of concealment cover, whereas deer from the least developed areas tended to select habitats that increased access to forage and cover. Deer selected habitats closer to well pads and avoided roads in all instances except along the most highly developed migratory routes, where road densities may have been too high for deer to avoid roads without deviating substantially from established migration routes. These results indicate that behavioral tendencies toward avoidance of anthropogenic disturbance can be overridden during migration by the strong fidelity ungulates demonstrate towards migration routes. If avoidance is feasible, then deer may select areas further from development, whereas in highly developed areas, deer may simply increase their rate of travel along established migration routes.
The disruption of traditional migratory routes by anthropogenic disturbances has shifted patterns of resource selection by many species, and in some instances has caused populations to decline. Moreover, in recent decades populations of mule deer (Odocoileus hemionus) have declined throughout much of their historic range in the western United States. We used resource-selection functions to determine if the presence of natural-gas development altered patterns of resource selection by migrating mule deer. We compared spring migration routes of adult female mule deer fitted with GPS collars (n = 167) among four study areas that had varying degrees of natural-gas development from 2008 to 2010 in the Piceance Basin of northwest Colorado, USA. Mule deer migrating through the most developed area had longer step lengths (straight-line distance between successive GPS locations) compared with deer in less-developed areas. Additionally, deer migrating through the most developed study areas tended to select for habitat types that provided greater amounts of concealment cover, whereas deer from the least developed areas tended to select habitats that increased access to forage and cover. Deer selected habitats closer to well pads and avoided roads in all instances except along the most highly developed migratory routes, where road densities may have been too high for deer to avoid roads without deviating substantially from established migration routes. These results indicate that behavioral tendencies toward avoidance of anthropogenic disturbance can be overridden during migration by the strong fidelity ungulates demonstrate towards migration routes. If avoidance is feasible, then deer may select areas further from development, whereas in highly developed areas, deer may simply increase their rate of travel along established migration routes.
Status of Fish and Macroinvertebrate Communities in a Watershed Experiencing High Rates of Fossil Fuel Extraction: Tenmile Creek, a Major Monongahela River Tributary
William G. Kimmel and David G. Argent, September 2012
Status of Fish and Macroinvertebrate Communities in a Watershed Experiencing High Rates of Fossil Fuel Extraction: Tenmile Creek, a Major Monongahela River Tributary
William G. Kimmel and David G. Argent (2012). Water, Air, & Soil Pollution, 4647-4657. 10.1007/s11270-012-1076-x
Abstract:
Over the summer and fall seasons, 2006–2010, we surveyed the fish and macroinvertebrate communities of the Tenmile Creek basin in southwestern Pennsylvania, an area undergoing accelerated extraction of energy resources—historically coal and more recently natural gas associated with the Marcellus formation. Tenmile Creek, its major South Fork (SF), and numerous tributaries drain a basin of 875 km2. The drainage network is characterized as warm-water, low-gradient, and net alkaline. The purpose was to provide synoptic baseline data on water quality and the resident aquatic communities in terms of species richness, stress tolerance, and trophic structure. Overall, we sampled 20 stations on the 2 main branches and 1 on each of the 12 tributaries. We collected 26,375 fishes representing nine families and 54 species/hybrids along with 989 macroinvertebrates from 25 separate taxa. The parameter which defines water quality here is specific conductance which ranges from natural background levels of about 400 μS/cm on the minimally impaired Tenmile mainstem to 4,500 μS/cm on its SF. Diverse fish and macroinvertebrate communities were documented at levels of specific conductance exceeding 1,000 μS/cm, well above the 300 μS/cm criterion to protect aquatic life proposed by the US Environmental Protection Agency for streams in the Central Appalachian Region. South Fork fish communities exhibit impairment at levels of specific conductance approaching the maximum observed here.
Over the summer and fall seasons, 2006–2010, we surveyed the fish and macroinvertebrate communities of the Tenmile Creek basin in southwestern Pennsylvania, an area undergoing accelerated extraction of energy resources—historically coal and more recently natural gas associated with the Marcellus formation. Tenmile Creek, its major South Fork (SF), and numerous tributaries drain a basin of 875 km2. The drainage network is characterized as warm-water, low-gradient, and net alkaline. The purpose was to provide synoptic baseline data on water quality and the resident aquatic communities in terms of species richness, stress tolerance, and trophic structure. Overall, we sampled 20 stations on the 2 main branches and 1 on each of the 12 tributaries. We collected 26,375 fishes representing nine families and 54 species/hybrids along with 989 macroinvertebrates from 25 separate taxa. The parameter which defines water quality here is specific conductance which ranges from natural background levels of about 400 μS/cm on the minimally impaired Tenmile mainstem to 4,500 μS/cm on its SF. Diverse fish and macroinvertebrate communities were documented at levels of specific conductance exceeding 1,000 μS/cm, well above the 300 μS/cm criterion to protect aquatic life proposed by the US Environmental Protection Agency for streams in the Central Appalachian Region. South Fork fish communities exhibit impairment at levels of specific conductance approaching the maximum observed here.
Early Trends in Landcover Change and Forest Fragmentation Due to Shale-Gas Development in Pennsylvania: A Potential Outcome for the Northcentral Appalachians
Drohan et al., May 2012
Early Trends in Landcover Change and Forest Fragmentation Due to Shale-Gas Development in Pennsylvania: A Potential Outcome for the Northcentral Appalachians
P. J. Drohan, M. Brittingham, J. Bishop, K. Yoder (2012). Environmental Management, 1061-1075. 10.1007/s00267-012-9841-6
Abstract:
Worldwide shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S., specifically the Allegheny Plateau in Pennsylvania, West Virginia, Ohio, and Kentucky, is experiencing rapid exploration. Using Pennsylvania as a proxy for regional development across the Plateau, we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania’s shale-gas development is greatest on private land, and is dominated by pads with 1–2 wells; less than 10 % of pads have five wells or more. Approximately 45–62 % of pads occur on agricultural land and 38–54 % in forest land (many in core forest on private land). Development of permits granted as of June 3, 2011, would convert at least 644–1072 ha of agricultural land and 536–894 ha of forest land. Agricultural land conversion suggests that drilling is somewhat competing with food production. Accounting for existing pads and development of all permits would result in at least 649 km of new road, which, along with pipelines, would fragment forest cover. The Susquehanna River basin (feeding the Chesapeake Bay), is most developed, with 885 pads (26 % in core forest); permit data suggests the basin will experience continued heavy development. The intensity of core forest disturbance, where many headwater streams occur, suggests that such streams should become a focus of aquatic monitoring. Given the intense development on private lands, we believe a regional strategy is needed to help guide infrastructure development, so that habitat loss, farmland conversion, and the risk to waterways are better managed.
Worldwide shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S., specifically the Allegheny Plateau in Pennsylvania, West Virginia, Ohio, and Kentucky, is experiencing rapid exploration. Using Pennsylvania as a proxy for regional development across the Plateau, we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania’s shale-gas development is greatest on private land, and is dominated by pads with 1–2 wells; less than 10 % of pads have five wells or more. Approximately 45–62 % of pads occur on agricultural land and 38–54 % in forest land (many in core forest on private land). Development of permits granted as of June 3, 2011, would convert at least 644–1072 ha of agricultural land and 536–894 ha of forest land. Agricultural land conversion suggests that drilling is somewhat competing with food production. Accounting for existing pads and development of all permits would result in at least 649 km of new road, which, along with pipelines, would fragment forest cover. The Susquehanna River basin (feeding the Chesapeake Bay), is most developed, with 885 pads (26 % in core forest); permit data suggests the basin will experience continued heavy development. The intensity of core forest disturbance, where many headwater streams occur, suggests that such streams should become a focus of aquatic monitoring. Given the intense development on private lands, we believe a regional strategy is needed to help guide infrastructure development, so that habitat loss, farmland conversion, and the risk to waterways are better managed.
Human-mediated shifts in animal habitat use: Sequential changes in pronghorn use of a natural gas field in Greater Yellowstone
Beckmann et al., March 2012
Human-mediated shifts in animal habitat use: Sequential changes in pronghorn use of a natural gas field in Greater Yellowstone
Jon P. Beckmann, Kim Murray, Renee G. Seidler, Joel Berger (2012). Biological Conservation, 222-233. 10.1016/j.biocon.2012.01.003
Abstract:
To manage America’s 991,479 km2 (245 million acres) of public BLM lands for such mixed uses as natural resource extraction, wildlife, and recreation requires knowledge about effects of habitat alterations. Two of North America’s largest natural gas fields occur in the southern region of the Greater Yellowstone Ecosystem (Wyoming), an area that contains >100,000 wintering ungulates. During a 5-year period (2005–2009), we concentrated on patterns of habitat selection of pronghorn (Antilocapra americana) to understand how winter weather and increasing habitat loss due to gas field development impact habitat selection. Since this population is held below a food ceiling (i.e., carrying capacity) by human harvest, we expected few habitat constraints on animal movements – hence we examined fine-scale habitat use in relationship to progressive energy footprints. We used mixed-effects resource selection function models on 125 GPS-collared female pronghorn, and analyzed a comprehensive set of factors that included habitat (e.g., slope, plant cover type) and variables examining the impact of gas field infrastructure and human activity (e.g., distance to nearest road and well pad, amount of habitat loss due to conversion to a road or well pad) inside gas fields. Our RSF models demonstrate: (1) a fivefold sequential decrease in habitat patches predicted to be of high use and (2) sequential fine-scale abandonment by pronghorn of areas with the greatest habitat loss and greatest industrial footprint. The ability to detect behavioral impacts may be a better sentinel and earlier warning for burgeoning impacts of resource extraction on wildlife populations than studies focused solely on demography. Nevertheless disentangling cause and effect through the use of behavior warrants further investigation.
To manage America’s 991,479 km2 (245 million acres) of public BLM lands for such mixed uses as natural resource extraction, wildlife, and recreation requires knowledge about effects of habitat alterations. Two of North America’s largest natural gas fields occur in the southern region of the Greater Yellowstone Ecosystem (Wyoming), an area that contains >100,000 wintering ungulates. During a 5-year period (2005–2009), we concentrated on patterns of habitat selection of pronghorn (Antilocapra americana) to understand how winter weather and increasing habitat loss due to gas field development impact habitat selection. Since this population is held below a food ceiling (i.e., carrying capacity) by human harvest, we expected few habitat constraints on animal movements – hence we examined fine-scale habitat use in relationship to progressive energy footprints. We used mixed-effects resource selection function models on 125 GPS-collared female pronghorn, and analyzed a comprehensive set of factors that included habitat (e.g., slope, plant cover type) and variables examining the impact of gas field infrastructure and human activity (e.g., distance to nearest road and well pad, amount of habitat loss due to conversion to a road or well pad) inside gas fields. Our RSF models demonstrate: (1) a fivefold sequential decrease in habitat patches predicted to be of high use and (2) sequential fine-scale abandonment by pronghorn of areas with the greatest habitat loss and greatest industrial footprint. The ability to detect behavioral impacts may be a better sentinel and earlier warning for burgeoning impacts of resource extraction on wildlife populations than studies focused solely on demography. Nevertheless disentangling cause and effect through the use of behavior warrants further investigation.
A Geographic Model to Assess and Limit Cumulative Ecological Degradation from Marcellus Shale Exploitation in New York, USA
John B. Davis and George R. Robinson, October 2024
A Geographic Model to Assess and Limit Cumulative Ecological Degradation from Marcellus Shale Exploitation in New York, USA
John B. Davis and George R. Robinson (2024). Ecology and Society, . 10.5751/ES-04822-170225
Abstract:
When natural resources are exploited, environmental costs and economic benefits are often asymmetric. An example is apparent in the environmental impacts from fossil fuel extraction by hydraulic fracturing. So far, most scrutiny has been focused on water quality in affected aquifers, with less attention paid to broader ecological impacts beyond individual drilling operations. Marcellus Shale methane exploitation in New York State, USA, has been delayed because of a regulatory moratorium, pending evaluation that has been directed primarily at localized impacts. We developed a GIS-based model, built on a hexagonal grid underlay nested within the U.S. Environmental Protection Agency’s EMAP system, to examine potential cumulative ecological impacts. In a two-step process, we characterized > 19,000 hexagons, each sized to approximate the footprint of one drilling site (2.57 km²), using ecological attributes; we then developed a method for apportioning resource access that includes assessments of cumulative ecological costs. Over one-quarter of the hexagons were excluded as off-limits on the basis of six criteria: slope suitability, regulated wetland cover, protected-land cover, length of high-quality streams, mapped road density, and open water cover. Three additional criteria were applied to assess the estimated conservation vulnerability of the remaining sites: density of grassland birds (North American Breeding Bird Survey), percent core forest (Coastal Change Analysis Program), and total density of all state-mapped streams; these were determined and used in combination to rank the 14,000 potentially accessible sites. In a second step, an iterative process was used to distribute potential site access among all towns (sub-county governments) within the Marcellus Shale Formation. At each iteration, one site was selected per town, either randomly or in rank order of increasing vulnerability. Results were computed as percent cumulative impact versus the number of sites committed and compared to a most-conservative selection process (ranked by statewide conservation vulnerability). Random selection with proportional distribution by town resulted in larger cumulative ecological impacts, but rank-ordered selection by town was in many ways comparable to selection by statewide conservation vulnerability ranking. These outcomes allow for a political solution for managing resource access fairly, based on a balanced geographic distribution of economic benefits, coupled with an underlying scientific basis for assessing the ecological costs that are publicly shared.
When natural resources are exploited, environmental costs and economic benefits are often asymmetric. An example is apparent in the environmental impacts from fossil fuel extraction by hydraulic fracturing. So far, most scrutiny has been focused on water quality in affected aquifers, with less attention paid to broader ecological impacts beyond individual drilling operations. Marcellus Shale methane exploitation in New York State, USA, has been delayed because of a regulatory moratorium, pending evaluation that has been directed primarily at localized impacts. We developed a GIS-based model, built on a hexagonal grid underlay nested within the U.S. Environmental Protection Agency’s EMAP system, to examine potential cumulative ecological impacts. In a two-step process, we characterized > 19,000 hexagons, each sized to approximate the footprint of one drilling site (2.57 km²), using ecological attributes; we then developed a method for apportioning resource access that includes assessments of cumulative ecological costs. Over one-quarter of the hexagons were excluded as off-limits on the basis of six criteria: slope suitability, regulated wetland cover, protected-land cover, length of high-quality streams, mapped road density, and open water cover. Three additional criteria were applied to assess the estimated conservation vulnerability of the remaining sites: density of grassland birds (North American Breeding Bird Survey), percent core forest (Coastal Change Analysis Program), and total density of all state-mapped streams; these were determined and used in combination to rank the 14,000 potentially accessible sites. In a second step, an iterative process was used to distribute potential site access among all towns (sub-county governments) within the Marcellus Shale Formation. At each iteration, one site was selected per town, either randomly or in rank order of increasing vulnerability. Results were computed as percent cumulative impact versus the number of sites committed and compared to a most-conservative selection process (ranked by statewide conservation vulnerability). Random selection with proportional distribution by town resulted in larger cumulative ecological impacts, but rank-ordered selection by town was in many ways comparable to selection by statewide conservation vulnerability ranking. These outcomes allow for a political solution for managing resource access fairly, based on a balanced geographic distribution of economic benefits, coupled with an underlying scientific basis for assessing the ecological costs that are publicly shared.
Effects of Disturbance Associated with Natural Gas Extraction on the Occurrence of Three Grassland Songbirds
Hamilton et al., June 2011
Effects of Disturbance Associated with Natural Gas Extraction on the Occurrence of Three Grassland Songbirds
Laura E. Hamilton, Brenda C. Dale, Cynthia A. Paszkowski (2011). Avian Conservation and Ecology, 7. 10.5751/ACE-00458-060107
Abstract:
Despite declines in the grassland bird guild and increasing rates of natural gas extraction on the Canadian prairies, relatively few studies have examined the effects of well sites and related infrastructure on these species. We conducted point counts on Canadian Forces Base Suffield, Alberta to investigate the effects of two well densities (high: 16 wells/2.59km(2), low: 9 wells/2.59km(2)) on Savannah Sparrow (Passerculus sandwichensis), Chestnut-collared Longspur (Calcarius ornatus), and Sprague's Pipit (Anthus spragueii) occurrence and abundance. Additionally, model building was employed to determine if landscape features, i.e., soil type, elevation, and topography, along with well density and anthropogenic disturbance to natural vegetation, i.e., the combined areas affected by wells, pipelines, trails, and roads, could predict the occurrence of the three species. For Savannah Sparrows, occurrence and abundance were higher in areas with high well densities compared with low well densities, reflecting the species' general tolerance of human disturbances. Chestnut-collared Longspurs were ubiquitous in the study area and abundance was not related to well density. Models for this species performed poorly and failed to predict occurrence accurately. Models for Sprague's Pipit were the strongest and showed that this species' occurrence was negatively related to anthropogenic disturbance. For all three species, landscape features had low predictive power. Our results indicate that disturbance caused by well sites and related infrastructure affect occurrence of some species and should be incorporated into conservation strategies for grassland birds, especially as undisturbed grasslands become candidates for energy development.
Despite declines in the grassland bird guild and increasing rates of natural gas extraction on the Canadian prairies, relatively few studies have examined the effects of well sites and related infrastructure on these species. We conducted point counts on Canadian Forces Base Suffield, Alberta to investigate the effects of two well densities (high: 16 wells/2.59km(2), low: 9 wells/2.59km(2)) on Savannah Sparrow (Passerculus sandwichensis), Chestnut-collared Longspur (Calcarius ornatus), and Sprague's Pipit (Anthus spragueii) occurrence and abundance. Additionally, model building was employed to determine if landscape features, i.e., soil type, elevation, and topography, along with well density and anthropogenic disturbance to natural vegetation, i.e., the combined areas affected by wells, pipelines, trails, and roads, could predict the occurrence of the three species. For Savannah Sparrows, occurrence and abundance were higher in areas with high well densities compared with low well densities, reflecting the species' general tolerance of human disturbances. Chestnut-collared Longspurs were ubiquitous in the study area and abundance was not related to well density. Models for this species performed poorly and failed to predict occurrence accurately. Models for Sprague's Pipit were the strongest and showed that this species' occurrence was negatively related to anthropogenic disturbance. For all three species, landscape features had low predictive power. Our results indicate that disturbance caused by well sites and related infrastructure affect occurrence of some species and should be incorporated into conservation strategies for grassland birds, especially as undisturbed grasslands become candidates for energy development.
Landscape patterns of avian habitat use and nest success are affected by chronic gas well compressor noise
Francis et al., May 2011
Landscape patterns of avian habitat use and nest success are affected by chronic gas well compressor noise
Clinton D. Francis, Juan Paritsis, Catherine P. Ortega, Alexander Cruz (2011). Landscape Ecology, 1269-1280. 10.1007/s10980-011-9609-z
Abstract:
Anthropogenic noise is becoming a dominant component of soundscapes across the world and these altered acoustic conditions may have severe consequences for natural communities. We modeled noise amplitudes from gas well compressors across a 16 km2 study area to estimate the influence of noise on avian habitat use and nest success. Using species with noise responses representative of other avian community members, across the study area we estimated gray flycatcher (Empidonax wrightii) and western scrub-jay (Aphelocoma californica) occupancy, and gray flycatcher nest success, which is highly dependent on predation by western scrub-jays. We also explore how alternative noise management and mitigation scenarios may reduce area impacted by noise. Compressor noise affected 84.5% of our study area and occupancy of each species was approximately 5% lower than would be expected without compressor noise. In contrast, flycatcher nest success was 7% higher, reflecting a decreased rate of predation in noisy areas. Not all alternative management and mitigation scenarios reduced the proportion of area affected by noise; however, use of sound barrier walls around compressors could reduce the area affected by noise by 70% and maintain occupancy and nest success rates at levels close to those expected in a landscape without compressor noise. These results suggest that noise from compressors could be effectively managed and, because habitat use and nest success are only two of many ecological processes that may change with noise exposure, minimizing the anthropogenic component of soundscapes should be a conservation priority.
Anthropogenic noise is becoming a dominant component of soundscapes across the world and these altered acoustic conditions may have severe consequences for natural communities. We modeled noise amplitudes from gas well compressors across a 16 km2 study area to estimate the influence of noise on avian habitat use and nest success. Using species with noise responses representative of other avian community members, across the study area we estimated gray flycatcher (Empidonax wrightii) and western scrub-jay (Aphelocoma californica) occupancy, and gray flycatcher nest success, which is highly dependent on predation by western scrub-jays. We also explore how alternative noise management and mitigation scenarios may reduce area impacted by noise. Compressor noise affected 84.5% of our study area and occupancy of each species was approximately 5% lower than would be expected without compressor noise. In contrast, flycatcher nest success was 7% higher, reflecting a decreased rate of predation in noisy areas. Not all alternative management and mitigation scenarios reduced the proportion of area affected by noise; however, use of sound barrier walls around compressors could reduce the area affected by noise by 70% and maintain occupancy and nest success rates at levels close to those expected in a landscape without compressor noise. These results suggest that noise from compressors could be effectively managed and, because habitat use and nest success are only two of many ecological processes that may change with noise exposure, minimizing the anthropogenic component of soundscapes should be a conservation priority.
Energy development affects populations of sagebrush songbirds in Wyoming
Michelle M. Gilbert and Anna D. Chalfoun, May 2011
Energy development affects populations of sagebrush songbirds in Wyoming
Michelle M. Gilbert and Anna D. Chalfoun (2011). The Journal of Wildlife Management, 816-824. 10.1002/jwmg.123
Abstract:
Oil and natural gas development in the Intermountain West region of North America has expanded over the last 2 decades, primarily within sagebrush dominated landscapes. Although the effects of energy development on high-profile game species such as the greater sage-grouse (Centrocercus urophasianus) have been documented, studies examining responses of non-game birds are lacking. Simultaneously, many songbirds that breed within sagebrush steppe habitats have shown range-wide population declines that are likely due to widespread habitat loss and alteration. We evaluated songbird abundance and species richness across gradients of oil and natural gas development intensity, as indexed by well density, at 3 energy fields (2 natural gas and 1 oil) in the Upper Green River Basin, Wyoming, USA during 2008–2009. While simultaneously accounting for important habitat attributes, increased well density was associated with significant decreases in Brewer's sparrow (Spizella breweri) and sage sparrow (Amphispiza belli) abundance, particularly in the Jonah natural gas field. Vesper sparrows (Pooecetes gramineus) were also negatively influenced by increased well density. Horned larks (Eremophila alpestris) increased with well density in the Pinedale Anticline natural gas field, and sage thrashers (Oreoscoptes montanus) showed no response to energy development. Species richness was not significantly affected by well density. Results suggest that regional declines of some songbird species, especially sagebrush-obligates, may be exacerbated by increased energy development. Understanding the specific mechanisms underlying responses to energy development is an important next step and will aid land managers in the development of effective mitigation and management strategies for the maintenance of stable bird communities in sagebrush habitat. © 2011 The Wildlife Society.
Oil and natural gas development in the Intermountain West region of North America has expanded over the last 2 decades, primarily within sagebrush dominated landscapes. Although the effects of energy development on high-profile game species such as the greater sage-grouse (Centrocercus urophasianus) have been documented, studies examining responses of non-game birds are lacking. Simultaneously, many songbirds that breed within sagebrush steppe habitats have shown range-wide population declines that are likely due to widespread habitat loss and alteration. We evaluated songbird abundance and species richness across gradients of oil and natural gas development intensity, as indexed by well density, at 3 energy fields (2 natural gas and 1 oil) in the Upper Green River Basin, Wyoming, USA during 2008–2009. While simultaneously accounting for important habitat attributes, increased well density was associated with significant decreases in Brewer's sparrow (Spizella breweri) and sage sparrow (Amphispiza belli) abundance, particularly in the Jonah natural gas field. Vesper sparrows (Pooecetes gramineus) were also negatively influenced by increased well density. Horned larks (Eremophila alpestris) increased with well density in the Pinedale Anticline natural gas field, and sage thrashers (Oreoscoptes montanus) showed no response to energy development. Species richness was not significantly affected by well density. Results suggest that regional declines of some songbird species, especially sagebrush-obligates, may be exacerbated by increased energy development. Understanding the specific mechanisms underlying responses to energy development is an important next step and will aid land managers in the development of effective mitigation and management strategies for the maintenance of stable bird communities in sagebrush habitat. © 2011 The Wildlife Society.
Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia
Mary Beth Adams, April 2011
Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia
Mary Beth Adams (2011). Journal of environmental quality, 1340-1344. 10.2134/jeq2010.0504
Abstract:
In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application, 56% of the trees within the fluid application area were dead. Ehrh. was the tree species with the highest mortality, and L. was the least affected, although all tree species present on the site showed damage symptoms and mortality. Surface soils (0-10 cm) were sampled in July and October 2008, June and October 2009, and May 2010 on the fluid application area and an adjacent reference area to evaluate the effects of the hydrofracturing fluid on soil chemistry and to attempt to identify the main chemical constituents of the hydrofracturing fluid. Surface soil concentrations of sodium and chloride increased 50-fold as a result of the land application of hydrofracturing fluids and declined over time. Soil acidity in the fluid application area declined with time, perhaps from altered organic matter cycling. This case study identifies the need for further research to help understand the nature and the environmental impacts of hydrofracturing fluids to devise optimal, safe disposal strategies.
In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application, 56% of the trees within the fluid application area were dead. Ehrh. was the tree species with the highest mortality, and L. was the least affected, although all tree species present on the site showed damage symptoms and mortality. Surface soils (0-10 cm) were sampled in July and October 2008, June and October 2009, and May 2010 on the fluid application area and an adjacent reference area to evaluate the effects of the hydrofracturing fluid on soil chemistry and to attempt to identify the main chemical constituents of the hydrofracturing fluid. Surface soil concentrations of sodium and chloride increased 50-fold as a result of the land application of hydrofracturing fluids and declined over time. Soil acidity in the fluid application area declined with time, perhaps from altered organic matter cycling. This case study identifies the need for further research to help understand the nature and the environmental impacts of hydrofracturing fluids to devise optimal, safe disposal strategies.
Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species
Copeland et al., October 2009
Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species
Holly E. Copeland, Kevin E. Doherty, David E. Naugle, Amy Pocewicz, Joseph M. Kiesecker (2009). PLoS ONE, e7400. 10.1371/journal.pone.0007400
Abstract:
Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation.
Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation.
Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure and functional potentials
Zhong et al., October 2009
Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure and functional potentials
Cheng Zhong, Camilla L. Nesbø, Konstantin von Gunten, Yifeng Zhang, Xiaoqing Shao, Rong Jin, Kurt O. Konhauser, Greg G. Goss, Jonathan W. Martin, Yuhe He, Pei-Yuan Qian, Brian D. Lanoil, Daniel S. Alessi (2009). Environmental Microbiology, . 10.1111/1462-2920.16009
Abstract:
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure and functional potentials under FPW exposure across a range of concentrations, exposure time and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g. Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions.
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure and functional potentials under FPW exposure across a range of concentrations, exposure time and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g. Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions.